Cox模型下的基因-环境互作分析

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY Annals of the Institute of Statistical Mathematics Pub Date : 2023-04-10 DOI:10.1007/s10463-023-00871-9
Kuangnan Fang, Jingmao Li, Yaqing Xu, Shuangge Ma, Qingzhao Zhang
{"title":"Cox模型下的基因-环境互作分析","authors":"Kuangnan Fang,&nbsp;Jingmao Li,&nbsp;Yaqing Xu,&nbsp;Shuangge Ma,&nbsp;Qingzhao Zhang","doi":"10.1007/s10463-023-00871-9","DOIUrl":null,"url":null,"abstract":"<div><p>For the survival of cancer and many other complex diseases, gene–environment (G-E) interactions have been established as having essential importance. G-E interaction analysis can be roughly classified as marginal and joint, depending on the number of G variables analyzed at a time. In this study, we focus on joint analysis, which can better reflect disease biology and is statistically more challenging. Many approaches have been developed for joint G-E interaction analysis for survival outcomes and led to important findings. However, without rigorous statistical development, quite a few methods have a weak theoretical ground. To fill this knowledge gap, in this article, we consider joint G-E interaction analysis under the Cox model. Sparse group penalization is adopted for regularizing estimation and selecting important main effects and interactions. The “main effects, interactions” variable selection hierarchy, which has been strongly advocated in recent literature, is satisfied. Significantly advancing from some published studies, we rigorously establish the consistency properties under high dimensionality. An effective computational algorithm is developed, simulation demonstrates competitive performance of the proposed approach, and analysis of The Cancer Genome Atlas (TCGA) data on stomach adenocarcinoma (STAD) further demonstrates its practical utility.</p></div>","PeriodicalId":55511,"journal":{"name":"Annals of the Institute of Statistical Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10463-023-00871-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Gene–environment interaction analysis under the Cox model\",\"authors\":\"Kuangnan Fang,&nbsp;Jingmao Li,&nbsp;Yaqing Xu,&nbsp;Shuangge Ma,&nbsp;Qingzhao Zhang\",\"doi\":\"10.1007/s10463-023-00871-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For the survival of cancer and many other complex diseases, gene–environment (G-E) interactions have been established as having essential importance. G-E interaction analysis can be roughly classified as marginal and joint, depending on the number of G variables analyzed at a time. In this study, we focus on joint analysis, which can better reflect disease biology and is statistically more challenging. Many approaches have been developed for joint G-E interaction analysis for survival outcomes and led to important findings. However, without rigorous statistical development, quite a few methods have a weak theoretical ground. To fill this knowledge gap, in this article, we consider joint G-E interaction analysis under the Cox model. Sparse group penalization is adopted for regularizing estimation and selecting important main effects and interactions. The “main effects, interactions” variable selection hierarchy, which has been strongly advocated in recent literature, is satisfied. Significantly advancing from some published studies, we rigorously establish the consistency properties under high dimensionality. An effective computational algorithm is developed, simulation demonstrates competitive performance of the proposed approach, and analysis of The Cancer Genome Atlas (TCGA) data on stomach adenocarcinoma (STAD) further demonstrates its practical utility.</p></div>\",\"PeriodicalId\":55511,\"journal\":{\"name\":\"Annals of the Institute of Statistical Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10463-023-00871-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of the Institute of Statistical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10463-023-00871-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Institute of Statistical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-023-00871-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

对于癌症和许多其他复杂疾病的生存,基因-环境(G-E)相互作用已被确定为具有至关重要的意义。根据一次分析G变量的数量,G- e相互作用分析大致可分为边际和联合两种。在本研究中,我们侧重于联合分析,这可以更好地反映疾病生物学,在统计学上更具挑战性。已经开发了许多方法来联合G-E相互作用分析生存结果,并导致了重要的发现。然而,由于没有严格的统计发展,相当多的方法理论基础薄弱。为了填补这一知识空白,在本文中,我们考虑在Cox模型下的联合G-E相互作用分析。采用稀疏组惩罚对估计进行正则化,选择重要的主效应和交互作用。满足近年来文献中大力提倡的“主效应、交互作用”变量选择层次。在一些已发表的研究成果的基础上,我们严格地建立了高维下的一致性。开发了一种有效的计算算法,仿真验证了该方法的竞争性能,并通过对胃癌基因组图谱(TCGA)数据的分析进一步验证了该方法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gene–environment interaction analysis under the Cox model

For the survival of cancer and many other complex diseases, gene–environment (G-E) interactions have been established as having essential importance. G-E interaction analysis can be roughly classified as marginal and joint, depending on the number of G variables analyzed at a time. In this study, we focus on joint analysis, which can better reflect disease biology and is statistically more challenging. Many approaches have been developed for joint G-E interaction analysis for survival outcomes and led to important findings. However, without rigorous statistical development, quite a few methods have a weak theoretical ground. To fill this knowledge gap, in this article, we consider joint G-E interaction analysis under the Cox model. Sparse group penalization is adopted for regularizing estimation and selecting important main effects and interactions. The “main effects, interactions” variable selection hierarchy, which has been strongly advocated in recent literature, is satisfied. Significantly advancing from some published studies, we rigorously establish the consistency properties under high dimensionality. An effective computational algorithm is developed, simulation demonstrates competitive performance of the proposed approach, and analysis of The Cancer Genome Atlas (TCGA) data on stomach adenocarcinoma (STAD) further demonstrates its practical utility.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Annals of the Institute of Statistical Mathematics (AISM) aims to provide a forum for open communication among statisticians, and to contribute to the advancement of statistics as a science to enable humans to handle information in order to cope with uncertainties. It publishes high-quality papers that shed new light on the theoretical, computational and/or methodological aspects of statistical science. Emphasis is placed on (a) development of new methodologies motivated by real data, (b) development of unifying theories, and (c) analysis and improvement of existing methodologies and theories.
期刊最新文献
Estimation of value-at-risk by $$L^{p}$$ quantile regression Simplified quasi-likelihood analysis for a locally asymptotically quadratic random field Asymptotic expected sensitivity function and its applications to measures of monotone association Penalized estimation for non-identifiable models Hidden AR process and adaptive Kalman filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1