Chad S. Rogers, Michael S. Jones, Sarah McConkey, Brent Spehar, Kristin J. Van Engen, M. Sommers, J. Peelle
{"title":"口语识别过程中听皮层活动的年龄相关差异","authors":"Chad S. Rogers, Michael S. Jones, Sarah McConkey, Brent Spehar, Kristin J. Van Engen, M. Sommers, J. Peelle","doi":"10.1101/2020.03.05.977306","DOIUrl":null,"url":null,"abstract":"Understanding spoken words requires the rapid matching of a complex acoustic stimulus with stored lexical representations. The degree to which the brain networks supporting spoken word recognition are affected by adult aging remains poorly understood. In the current study we used fMRI to measure the brain responses to spoken words in two conditions: an attentive listening condition, in which no response was required, and a repetition task. Listeners were 29 young adults (aged 19–30 years) and 32 older adults (aged 65–81 years) without self-reported hearing difficulty. We found largely similar patterns of activity during word perception for both young and older adults, centered on bilateral superior temporal gyrus. As expected, the repetition condition resulted in significantly more activity in areas related to motor planning and execution (including premotor cortex and supplemental motor area) compared to the attentive listening condition. Importantly, however, older adults showed significantly less activity in probabilistically-defined auditory cortex than young adults when listening to individual words in both the attentive listening and repetition tasks. Age differences in auditory cortex activity were seen selectively for words (no age differences were present for 1-channel vocoded speech, used as a control condition), and could not be easily explained by accuracy on the task, movement in the scanner, or hearing sensitivity (available on a subset of participants). These findings indicate largely similar patterns of brain activity for young and older adults when listening to words in quiet, but suggest less recruitment of auditory cortex by the older adults.","PeriodicalId":34845,"journal":{"name":"Neurobiology of Language","volume":"1 1","pages":"452 - 473"},"PeriodicalIF":3.6000,"publicationDate":"2020-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Age-Related Differences in Auditory Cortex Activity During Spoken Word Recognition\",\"authors\":\"Chad S. Rogers, Michael S. Jones, Sarah McConkey, Brent Spehar, Kristin J. Van Engen, M. Sommers, J. Peelle\",\"doi\":\"10.1101/2020.03.05.977306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding spoken words requires the rapid matching of a complex acoustic stimulus with stored lexical representations. The degree to which the brain networks supporting spoken word recognition are affected by adult aging remains poorly understood. In the current study we used fMRI to measure the brain responses to spoken words in two conditions: an attentive listening condition, in which no response was required, and a repetition task. Listeners were 29 young adults (aged 19–30 years) and 32 older adults (aged 65–81 years) without self-reported hearing difficulty. We found largely similar patterns of activity during word perception for both young and older adults, centered on bilateral superior temporal gyrus. As expected, the repetition condition resulted in significantly more activity in areas related to motor planning and execution (including premotor cortex and supplemental motor area) compared to the attentive listening condition. Importantly, however, older adults showed significantly less activity in probabilistically-defined auditory cortex than young adults when listening to individual words in both the attentive listening and repetition tasks. Age differences in auditory cortex activity were seen selectively for words (no age differences were present for 1-channel vocoded speech, used as a control condition), and could not be easily explained by accuracy on the task, movement in the scanner, or hearing sensitivity (available on a subset of participants). These findings indicate largely similar patterns of brain activity for young and older adults when listening to words in quiet, but suggest less recruitment of auditory cortex by the older adults.\",\"PeriodicalId\":34845,\"journal\":{\"name\":\"Neurobiology of Language\",\"volume\":\"1 1\",\"pages\":\"452 - 473\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2020-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurobiology of Language\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2020.03.05.977306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LINGUISTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Language","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2020.03.05.977306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LINGUISTICS","Score":null,"Total":0}
Age-Related Differences in Auditory Cortex Activity During Spoken Word Recognition
Understanding spoken words requires the rapid matching of a complex acoustic stimulus with stored lexical representations. The degree to which the brain networks supporting spoken word recognition are affected by adult aging remains poorly understood. In the current study we used fMRI to measure the brain responses to spoken words in two conditions: an attentive listening condition, in which no response was required, and a repetition task. Listeners were 29 young adults (aged 19–30 years) and 32 older adults (aged 65–81 years) without self-reported hearing difficulty. We found largely similar patterns of activity during word perception for both young and older adults, centered on bilateral superior temporal gyrus. As expected, the repetition condition resulted in significantly more activity in areas related to motor planning and execution (including premotor cortex and supplemental motor area) compared to the attentive listening condition. Importantly, however, older adults showed significantly less activity in probabilistically-defined auditory cortex than young adults when listening to individual words in both the attentive listening and repetition tasks. Age differences in auditory cortex activity were seen selectively for words (no age differences were present for 1-channel vocoded speech, used as a control condition), and could not be easily explained by accuracy on the task, movement in the scanner, or hearing sensitivity (available on a subset of participants). These findings indicate largely similar patterns of brain activity for young and older adults when listening to words in quiet, but suggest less recruitment of auditory cortex by the older adults.