{"title":"FTFNet:多光谱图像分割","authors":"Justin Edwards, M. El-Sharkawy","doi":"10.3390/jlpea13030042","DOIUrl":null,"url":null,"abstract":"Semantic segmentation is a machine learning task that is seeing increased utilization in multiple fields, from medical imagery to land demarcation and autonomous vehicles. A real-time autonomous system must be lightweight while maintaining reasonable accuracy. This research focuses on leveraging the fusion of long-wave infrared (LWIR) imagery with visual spectrum imagery to fill in the inherent performance gaps when using visual imagery alone. This approach culminated in the Fast Thermal Fusion Network (FTFNet), which shows marked improvement over the baseline architecture of the Multispectral Fusion Network (MFNet) while maintaining a low footprint.","PeriodicalId":38100,"journal":{"name":"Journal of Low Power Electronics and Applications","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FTFNet: Multispectral Image Segmentation\",\"authors\":\"Justin Edwards, M. El-Sharkawy\",\"doi\":\"10.3390/jlpea13030042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semantic segmentation is a machine learning task that is seeing increased utilization in multiple fields, from medical imagery to land demarcation and autonomous vehicles. A real-time autonomous system must be lightweight while maintaining reasonable accuracy. This research focuses on leveraging the fusion of long-wave infrared (LWIR) imagery with visual spectrum imagery to fill in the inherent performance gaps when using visual imagery alone. This approach culminated in the Fast Thermal Fusion Network (FTFNet), which shows marked improvement over the baseline architecture of the Multispectral Fusion Network (MFNet) while maintaining a low footprint.\",\"PeriodicalId\":38100,\"journal\":{\"name\":\"Journal of Low Power Electronics and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Low Power Electronics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jlpea13030042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Power Electronics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jlpea13030042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Semantic segmentation is a machine learning task that is seeing increased utilization in multiple fields, from medical imagery to land demarcation and autonomous vehicles. A real-time autonomous system must be lightweight while maintaining reasonable accuracy. This research focuses on leveraging the fusion of long-wave infrared (LWIR) imagery with visual spectrum imagery to fill in the inherent performance gaps when using visual imagery alone. This approach culminated in the Fast Thermal Fusion Network (FTFNet), which shows marked improvement over the baseline architecture of the Multispectral Fusion Network (MFNet) while maintaining a low footprint.