巴西伊廷加Jenipapo区Mario Pinto矿中kosnarite KZr2(PO4)3的晶体结构测定

IF 1.1 4区 地球科学 Q3 MINERALOGY Canadian Mineralogist Pub Date : 2020-11-24 DOI:10.3749/canmin.2000044
P. Piilonen, H. Friis, R. Rowe, G. Poirier
{"title":"巴西伊廷加Jenipapo区Mario Pinto矿中kosnarite KZr2(PO4)3的晶体结构测定","authors":"P. Piilonen, H. Friis, R. Rowe, G. Poirier","doi":"10.3749/canmin.2000044","DOIUrl":null,"url":null,"abstract":"The crystal structure of a natural kosnarite, KZr2(PO4)3 from the Mario Pinto Mine, Jenipapo district, Brazil, has been determined for the first time. Kosnarite and its related synthetic compounds (NZP) are open-framework orthophosphates of the type ([6]M′[8]M′′)L2(TO4)3 (where M = Li, Na, K, Rb, Cs; L = Ti, Zr, Hf; and T = P, Si). These compounds have been proposed as potential radioactive waste hosts as a result of their physiochemical properties and because their crystal structure allows for extreme isomorphism and incorporation of all 42 radioactive nuclides present in nuclear waste. Kosnarite from the Mario Pinto mine is hexagonal, Rc, with a = 8.7205(1), c = 23.9436(3) Å, and V = 1576.89(4) Å3. The average chemical formula (n = 75) is (K0.96Na0.02)Σ0.98(Zr1.93Hf0.08)Σ1.01(P2.99Si0.01)Σ3.00O12. The structure contains one six-coordinated Zr site (L), one four-coordinated P site (T), and a six-coordinated K site (M′); in kosnarite, the M″ site is vacant. The average bond lengths in the ZrO6 octahedra (2.0646 Å) and PO4 tetrahedra (1.5278 Å) are slightly larger than those observed in the synthetic analogue (<Zr–O> = 2.063 Å, <P–O> = 1.522 Å). The ZrO6 octahedra and PO4 tetrahedra share corners to form ribbons of [Zr2(PO4)3]– units parallel to the c axis, which are further joined by PO4 tetrahedra perpendicular to c to form a 3D network. Kosnarite is one of only five natural alkali zircono-orthophosphates, all of which are late-stage hydrothermal minerals. Although synthetic Na-dominant endmember analogues of kosnarite exist, the distortions in the structure with respect to the M and L octahedra, along with experimental evidence at hydrothermal temperatures, suggest that only K (or Li) endmembers are possible in nature.","PeriodicalId":9455,"journal":{"name":"Canadian Mineralogist","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2020-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3749/canmin.2000044","citationCount":"3","resultStr":"{\"title\":\"Crystal structure determination of kosnarite, KZr2(PO4)3, from the Mario Pinto Mine, Jenipapo district, Itinga, Brazil\",\"authors\":\"P. Piilonen, H. Friis, R. Rowe, G. Poirier\",\"doi\":\"10.3749/canmin.2000044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The crystal structure of a natural kosnarite, KZr2(PO4)3 from the Mario Pinto Mine, Jenipapo district, Brazil, has been determined for the first time. Kosnarite and its related synthetic compounds (NZP) are open-framework orthophosphates of the type ([6]M′[8]M′′)L2(TO4)3 (where M = Li, Na, K, Rb, Cs; L = Ti, Zr, Hf; and T = P, Si). These compounds have been proposed as potential radioactive waste hosts as a result of their physiochemical properties and because their crystal structure allows for extreme isomorphism and incorporation of all 42 radioactive nuclides present in nuclear waste. Kosnarite from the Mario Pinto mine is hexagonal, Rc, with a = 8.7205(1), c = 23.9436(3) Å, and V = 1576.89(4) Å3. The average chemical formula (n = 75) is (K0.96Na0.02)Σ0.98(Zr1.93Hf0.08)Σ1.01(P2.99Si0.01)Σ3.00O12. The structure contains one six-coordinated Zr site (L), one four-coordinated P site (T), and a six-coordinated K site (M′); in kosnarite, the M″ site is vacant. The average bond lengths in the ZrO6 octahedra (2.0646 Å) and PO4 tetrahedra (1.5278 Å) are slightly larger than those observed in the synthetic analogue (<Zr–O> = 2.063 Å, <P–O> = 1.522 Å). The ZrO6 octahedra and PO4 tetrahedra share corners to form ribbons of [Zr2(PO4)3]– units parallel to the c axis, which are further joined by PO4 tetrahedra perpendicular to c to form a 3D network. Kosnarite is one of only five natural alkali zircono-orthophosphates, all of which are late-stage hydrothermal minerals. Although synthetic Na-dominant endmember analogues of kosnarite exist, the distortions in the structure with respect to the M and L octahedra, along with experimental evidence at hydrothermal temperatures, suggest that only K (or Li) endmembers are possible in nature.\",\"PeriodicalId\":9455,\"journal\":{\"name\":\"Canadian Mineralogist\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3749/canmin.2000044\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Mineralogist\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3749/canmin.2000044\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MINERALOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Mineralogist","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3749/canmin.2000044","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MINERALOGY","Score":null,"Total":0}
引用次数: 3

摘要

首次确定了巴西Jenipapo地区Mario Pinto矿的天然黑线石KZr2(PO4)3的晶体结构。黑石及其相关合成化合物(NZP)为([6]M′[8]M′)L2(TO4)3(其中M = Li, Na, K, Rb, Cs;L = Ti, Zr, Hf;T = P, Si)。由于这些化合物的物理化学性质以及它们的晶体结构允许在核废料中存在的所有42种放射性核素的极端同形性和合并,这些化合物已被提议作为潜在的放射性废物宿主。Mario Pinto矿的小钨矿为六边形,Rc, a = 8.7205(1), c = 23.9436(3) Å, V = 1576.89(4) Å3。平均化学式(n = 75)为(K0.96Na0.02)Σ0.98(Zr1.93Hf0.08)Σ1.01(P2.99Si0.01)Σ3.00O12。该结构包含一个六配位的Zr位点(L)、一个四配位的P位点(T)和一个六配位的K位点(M’);在kosnarite, M″网站是空的。ZrO6八面体(2.0646 Å)和PO4四面体(1.5278 Å)的平均键长略大于合成类似物(= 2.063 Å, = 1.522 Å)。ZrO6八面体和PO4四面体共用角,形成平行于c轴的[Zr2(PO4)3] -单元带,并由垂直于c的PO4四面体进一步连接形成三维网络。黑石是我国仅有的5种天然碱性正磷酸盐之一,均为晚期热液矿物。虽然存在合成的钠优势端元类似物,但相对于M和L八面体的结构扭曲,以及在水热温度下的实验证据表明,自然界中只有K(或Li)端元是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Crystal structure determination of kosnarite, KZr2(PO4)3, from the Mario Pinto Mine, Jenipapo district, Itinga, Brazil
The crystal structure of a natural kosnarite, KZr2(PO4)3 from the Mario Pinto Mine, Jenipapo district, Brazil, has been determined for the first time. Kosnarite and its related synthetic compounds (NZP) are open-framework orthophosphates of the type ([6]M′[8]M′′)L2(TO4)3 (where M = Li, Na, K, Rb, Cs; L = Ti, Zr, Hf; and T = P, Si). These compounds have been proposed as potential radioactive waste hosts as a result of their physiochemical properties and because their crystal structure allows for extreme isomorphism and incorporation of all 42 radioactive nuclides present in nuclear waste. Kosnarite from the Mario Pinto mine is hexagonal, Rc, with a = 8.7205(1), c = 23.9436(3) Å, and V = 1576.89(4) Å3. The average chemical formula (n = 75) is (K0.96Na0.02)Σ0.98(Zr1.93Hf0.08)Σ1.01(P2.99Si0.01)Σ3.00O12. The structure contains one six-coordinated Zr site (L), one four-coordinated P site (T), and a six-coordinated K site (M′); in kosnarite, the M″ site is vacant. The average bond lengths in the ZrO6 octahedra (2.0646 Å) and PO4 tetrahedra (1.5278 Å) are slightly larger than those observed in the synthetic analogue ( = 2.063 Å, = 1.522 Å). The ZrO6 octahedra and PO4 tetrahedra share corners to form ribbons of [Zr2(PO4)3]– units parallel to the c axis, which are further joined by PO4 tetrahedra perpendicular to c to form a 3D network. Kosnarite is one of only five natural alkali zircono-orthophosphates, all of which are late-stage hydrothermal minerals. Although synthetic Na-dominant endmember analogues of kosnarite exist, the distortions in the structure with respect to the M and L octahedra, along with experimental evidence at hydrothermal temperatures, suggest that only K (or Li) endmembers are possible in nature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Canadian Mineralogist
Canadian Mineralogist 地学-矿物学
CiteScore
2.20
自引率
22.20%
发文量
45
审稿时长
4-8 weeks
期刊介绍: Since 1962, The Canadian Mineralogist has published papers dealing with all aspects of mineralogy, crystallography, petrology, economic geology, geochemistry, and applied mineralogy.
期刊最新文献
Systematic review of health-related quality of life (HRQoL) issues associated with gastric cancer: capturing cross-cultural differences. Complex Weblike Hydrogen Bonding in Large “Drain Pipe” Channels of Wightmanite Revealed by New X-Ray and Spectroscopic Measurements From Structure Topology to Chemical Composition. XXIX. Revision of the Crystal Structure of Perraultite, NaBaMn4Ti2(Si2O7)2O2(OH)2F, a Seidozerite-Supergroup TS-Block Mineral from the Oktyabr'skii Massif, Ukraine, and Discreditation of Surkhobite Fleetite, Cu2RhIrSb2, a New Species of Platinum-Group Mineral from the Miass Placer Zone, Southern Urals, Russia Sveite from the Northeastern San Joaquin Valley, California
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1