废锂离子电池回收的技术选择和设计演变:影响、挑战和机遇

IF 5.4 3区 工程技术 Q2 ENERGY & FUELS Wiley Interdisciplinary Reviews-Energy and Environment Pub Date : 2023-05-26 DOI:10.1002/wene.481
Rumana Hossain, Montajar Sarkar, V. Sahajwalla
{"title":"废锂离子电池回收的技术选择和设计演变:影响、挑战和机遇","authors":"Rumana Hossain, Montajar Sarkar, V. Sahajwalla","doi":"10.1002/wene.481","DOIUrl":null,"url":null,"abstract":"The lithium‐ion battery (LIB) market is growing, driven by consumer demand and the imperative to reduce greenhouse gas (GHG) emissions. The socio‐environmental impacts of LIBs production are vast; thus, it is of paramount importance to acquire knowledge about the consequences of lithium metal mining on human health, farming and the overall ecosystem. The materials embedded in spent LIBs have high industrial value. To minimize environmental impacts and conserve declining natural resources, the global supply chain for the raw materials for LIBs should not rely solely on mining. Rather, manufacturers should have access to the critical materials recovered from waste, as a sustainable and reliable secondary source of valuable materials. It is also crucial to study the hazards and economic considerations associated with waste LIB management from disassembly to final recycling stage. This article evaluates and highlights various current approaches to recycling and reuse of LIBs, as well as potential future developments. The pros and cons of different technological options for recycling spent LIBs, and opportunities to use small‐scale recycling technology to overcome the associated barriers, are also discussed.","PeriodicalId":48766,"journal":{"name":"Wiley Interdisciplinary Reviews-Energy and Environment","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Technological options and design evolution for recycling spent lithium‐ion batteries: Impact, challenges, and opportunities\",\"authors\":\"Rumana Hossain, Montajar Sarkar, V. Sahajwalla\",\"doi\":\"10.1002/wene.481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The lithium‐ion battery (LIB) market is growing, driven by consumer demand and the imperative to reduce greenhouse gas (GHG) emissions. The socio‐environmental impacts of LIBs production are vast; thus, it is of paramount importance to acquire knowledge about the consequences of lithium metal mining on human health, farming and the overall ecosystem. The materials embedded in spent LIBs have high industrial value. To minimize environmental impacts and conserve declining natural resources, the global supply chain for the raw materials for LIBs should not rely solely on mining. Rather, manufacturers should have access to the critical materials recovered from waste, as a sustainable and reliable secondary source of valuable materials. It is also crucial to study the hazards and economic considerations associated with waste LIB management from disassembly to final recycling stage. This article evaluates and highlights various current approaches to recycling and reuse of LIBs, as well as potential future developments. The pros and cons of different technological options for recycling spent LIBs, and opportunities to use small‐scale recycling technology to overcome the associated barriers, are also discussed.\",\"PeriodicalId\":48766,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Energy and Environment\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Energy and Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/wene.481\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Energy and Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/wene.481","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 3

摘要

在消费者需求和减少温室气体(GHG)排放的推动下,锂离子电池(LIB)市场正在增长。lib生产的社会环境影响是巨大的;因此,获取有关锂金属开采对人类健康、农业和整个生态系统的影响的知识至关重要。废lib中嵌入的材料具有很高的工业价值。为了最大限度地减少对环境的影响,保护日益减少的自然资源,lib原材料的全球供应链不应仅仅依赖于采矿。相反,制造商应该能够获得从废物中回收的关键材料,作为有价值材料的可持续和可靠的二次来源。从拆解到最终回收阶段,研究与废物LIB管理相关的危害和经济考虑也至关重要。本文评估并强调了目前回收和再利用lib的各种方法,以及潜在的未来发展。本文还讨论了回收废lib的不同技术选择的利弊,以及利用小规模回收技术克服相关障碍的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Technological options and design evolution for recycling spent lithium‐ion batteries: Impact, challenges, and opportunities
The lithium‐ion battery (LIB) market is growing, driven by consumer demand and the imperative to reduce greenhouse gas (GHG) emissions. The socio‐environmental impacts of LIBs production are vast; thus, it is of paramount importance to acquire knowledge about the consequences of lithium metal mining on human health, farming and the overall ecosystem. The materials embedded in spent LIBs have high industrial value. To minimize environmental impacts and conserve declining natural resources, the global supply chain for the raw materials for LIBs should not rely solely on mining. Rather, manufacturers should have access to the critical materials recovered from waste, as a sustainable and reliable secondary source of valuable materials. It is also crucial to study the hazards and economic considerations associated with waste LIB management from disassembly to final recycling stage. This article evaluates and highlights various current approaches to recycling and reuse of LIBs, as well as potential future developments. The pros and cons of different technological options for recycling spent LIBs, and opportunities to use small‐scale recycling technology to overcome the associated barriers, are also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.70
自引率
3.30%
发文量
42
期刊介绍: Wiley Interdisciplinary Reviews: Energy and Environmentis a new type of review journal covering all aspects of energy technology, security and environmental impact. Energy is one of the most critical resources for the welfare and prosperity of society. It also causes adverse environmental and societal effects, notably climate change which is the severest global problem in the modern age. Finding satisfactory solutions to the challenges ahead will need a linking of energy technology innovations, security, energy poverty, and environmental and climate impacts. The broad scope of energy issues demands collaboration between different disciplines of science and technology, and strong interaction between engineering, physical and life scientists, economists, sociologists and policy-makers.
期刊最新文献
Toward low‐carbon cities: A review of circular economy integration in urban waste management and its impact on carbon emissions Technical and economic challenges for floating offshore wind deployment in Italy and in the Mediterranean Sea Challenges and opportunities toward a sustainable bio‐based chemical sector in Europe An updated review and perspective on efficient hydrogen generation via solar thermal water splitting Recent trends and developments in protection systems for microgrids incorporating distributed generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1