{"title":"光催化太阳能氢转化的单原子含钴氮化碳:x射线光谱显微镜研究","authors":"Yu-Cheng Huang , Jie Chen , Ying-Rui Lu , K. Thanigai Arul , Takuji Ohigashi , Jeng-Lung Chen , Chi-Liang Chen , Shaohua Shen , Wu-Ching Chou , Way-Faung Pong , Chung-Li Dong","doi":"10.1016/j.elspec.2023.147319","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>The use of carbon nitride-based materials and light to drive catalytic water splitting has enormous potential for the production of hydrogen. Revealing the processes of molecular conjugation, nucleation, and crystallization in crystalline carbon nitride is expected to enhance the </span>photocatalytic activity<span> through the creation of isotype heterojunctions and active sites. In this work, the addition of </span></span>cobalt salts<span><span> in ionothermal synthesis was found to promote the phase transition of heptazine-based crystalline carbon nitride (CCN) to triazine-based poly (triazine imide) (PTI), resulting in the formation of a single-atom cobalt-doped coordinated isotype CCN/PTI heterojunction. The new hybrid orbital<span><span> modulates the atomic/electronic structure and the band gap of the CCN/PTI heterojunction, and synergistically increases the absorption of visible light, accelerating the separation and transfer of photoexcited electrons and holes. Synchrotron-based X-ray spectroscopy and microscopy are used to identify the origin of the improved performance of the single-atom cobalt-doped CCN/PTI heterojunction in the photocatalytic </span>hydrogen evolution reaction. This work demonstrates that synchrotron X-ray spectroscopy is a promising tool for designing materials aimed at enhancing photocatalytic activity in </span></span>solar energy conversion applications.</span></p></div>","PeriodicalId":15726,"journal":{"name":"Journal of Electron Spectroscopy and Related Phenomena","volume":"264 ","pages":"Article 147319"},"PeriodicalIF":1.8000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Single-atom cobalt-incorporating carbon nitride for photocatalytic solar hydrogen conversion: An X-ray spectromicroscopy study\",\"authors\":\"Yu-Cheng Huang , Jie Chen , Ying-Rui Lu , K. Thanigai Arul , Takuji Ohigashi , Jeng-Lung Chen , Chi-Liang Chen , Shaohua Shen , Wu-Ching Chou , Way-Faung Pong , Chung-Li Dong\",\"doi\":\"10.1016/j.elspec.2023.147319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>The use of carbon nitride-based materials and light to drive catalytic water splitting has enormous potential for the production of hydrogen. Revealing the processes of molecular conjugation, nucleation, and crystallization in crystalline carbon nitride is expected to enhance the </span>photocatalytic activity<span> through the creation of isotype heterojunctions and active sites. In this work, the addition of </span></span>cobalt salts<span><span> in ionothermal synthesis was found to promote the phase transition of heptazine-based crystalline carbon nitride (CCN) to triazine-based poly (triazine imide) (PTI), resulting in the formation of a single-atom cobalt-doped coordinated isotype CCN/PTI heterojunction. The new hybrid orbital<span><span> modulates the atomic/electronic structure and the band gap of the CCN/PTI heterojunction, and synergistically increases the absorption of visible light, accelerating the separation and transfer of photoexcited electrons and holes. Synchrotron-based X-ray spectroscopy and microscopy are used to identify the origin of the improved performance of the single-atom cobalt-doped CCN/PTI heterojunction in the photocatalytic </span>hydrogen evolution reaction. This work demonstrates that synchrotron X-ray spectroscopy is a promising tool for designing materials aimed at enhancing photocatalytic activity in </span></span>solar energy conversion applications.</span></p></div>\",\"PeriodicalId\":15726,\"journal\":{\"name\":\"Journal of Electron Spectroscopy and Related Phenomena\",\"volume\":\"264 \",\"pages\":\"Article 147319\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electron Spectroscopy and Related Phenomena\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0368204823000361\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electron Spectroscopy and Related Phenomena","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0368204823000361","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
Single-atom cobalt-incorporating carbon nitride for photocatalytic solar hydrogen conversion: An X-ray spectromicroscopy study
The use of carbon nitride-based materials and light to drive catalytic water splitting has enormous potential for the production of hydrogen. Revealing the processes of molecular conjugation, nucleation, and crystallization in crystalline carbon nitride is expected to enhance the photocatalytic activity through the creation of isotype heterojunctions and active sites. In this work, the addition of cobalt salts in ionothermal synthesis was found to promote the phase transition of heptazine-based crystalline carbon nitride (CCN) to triazine-based poly (triazine imide) (PTI), resulting in the formation of a single-atom cobalt-doped coordinated isotype CCN/PTI heterojunction. The new hybrid orbital modulates the atomic/electronic structure and the band gap of the CCN/PTI heterojunction, and synergistically increases the absorption of visible light, accelerating the separation and transfer of photoexcited electrons and holes. Synchrotron-based X-ray spectroscopy and microscopy are used to identify the origin of the improved performance of the single-atom cobalt-doped CCN/PTI heterojunction in the photocatalytic hydrogen evolution reaction. This work demonstrates that synchrotron X-ray spectroscopy is a promising tool for designing materials aimed at enhancing photocatalytic activity in solar energy conversion applications.
期刊介绍:
The Journal of Electron Spectroscopy and Related Phenomena publishes experimental, theoretical and applied work in the field of electron spectroscopy and electronic structure, involving techniques which use high energy photons (>10 eV) or electrons as probes or detected particles in the investigation.