Jianqiang Zhang, Jun Yang, Jin Chen, Junxun Hu, Shuangyan Yang
{"title":"基于手持近红外光谱和多层极限学习机算法的甲基苯丙胺药物不同来源的快速识别","authors":"Jianqiang Zhang, Jun Yang, Jin Chen, Junxun Hu, Shuangyan Yang","doi":"10.1177/09670335221130433","DOIUrl":null,"url":null,"abstract":"The rapid recognition of the sources of the drugs can provide valuable clues and provide the basis for determining the nature of a drug case. Here, a novel recognition method was put forward to identify the source of methamphetamine drugs rapidly and non-destructively by using a hand-held near infrared (NIR) spectrometer and a multi-layer-extreme learning machine (ML-ELM) algorithm. The accuracy, precision, sensitivity, and F-score were higher with the proposed ML-ELM algorithm than in traditional linear discriminant analysis (LDA), extreme learning machine (ELM) classification, and partial least squares (PLS) regression algorithms. The prediction accuracy of ML-ELM algorithm is 25.0%, 15.3% and 18.1% higher than that of LDA, ELM and PLS regression, respectively. The ML-ELM models for recognizing the different sources of methamphetamine drugs had the best generalization ability and prediction results. The experimental results indicated that the combination of hand-held NIR technology and ML-ELM algorithm can recognize the different sources of methamphetamine drugs rapidly, accurately, and non-destructively.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid recognition of different sources of methamphetamine drugs based on hand-held near infrared spectroscopy and multi-layer-extreme learning machine algorithms\",\"authors\":\"Jianqiang Zhang, Jun Yang, Jin Chen, Junxun Hu, Shuangyan Yang\",\"doi\":\"10.1177/09670335221130433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid recognition of the sources of the drugs can provide valuable clues and provide the basis for determining the nature of a drug case. Here, a novel recognition method was put forward to identify the source of methamphetamine drugs rapidly and non-destructively by using a hand-held near infrared (NIR) spectrometer and a multi-layer-extreme learning machine (ML-ELM) algorithm. The accuracy, precision, sensitivity, and F-score were higher with the proposed ML-ELM algorithm than in traditional linear discriminant analysis (LDA), extreme learning machine (ELM) classification, and partial least squares (PLS) regression algorithms. The prediction accuracy of ML-ELM algorithm is 25.0%, 15.3% and 18.1% higher than that of LDA, ELM and PLS regression, respectively. The ML-ELM models for recognizing the different sources of methamphetamine drugs had the best generalization ability and prediction results. The experimental results indicated that the combination of hand-held NIR technology and ML-ELM algorithm can recognize the different sources of methamphetamine drugs rapidly, accurately, and non-destructively.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1177/09670335221130433\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/09670335221130433","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Rapid recognition of different sources of methamphetamine drugs based on hand-held near infrared spectroscopy and multi-layer-extreme learning machine algorithms
The rapid recognition of the sources of the drugs can provide valuable clues and provide the basis for determining the nature of a drug case. Here, a novel recognition method was put forward to identify the source of methamphetamine drugs rapidly and non-destructively by using a hand-held near infrared (NIR) spectrometer and a multi-layer-extreme learning machine (ML-ELM) algorithm. The accuracy, precision, sensitivity, and F-score were higher with the proposed ML-ELM algorithm than in traditional linear discriminant analysis (LDA), extreme learning machine (ELM) classification, and partial least squares (PLS) regression algorithms. The prediction accuracy of ML-ELM algorithm is 25.0%, 15.3% and 18.1% higher than that of LDA, ELM and PLS regression, respectively. The ML-ELM models for recognizing the different sources of methamphetamine drugs had the best generalization ability and prediction results. The experimental results indicated that the combination of hand-held NIR technology and ML-ELM algorithm can recognize the different sources of methamphetamine drugs rapidly, accurately, and non-destructively.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.