{"title":"铣削过程无线振动监测系统","authors":"M. Fikri, K. Saptaji, Fijai Naja Azmi","doi":"10.5614/itbj.ict.res.appl.2022.16.1.3","DOIUrl":null,"url":null,"abstract":"The implementation of industrial revolution 4.0 in manufacturing industries is necessary to adapt to the rapid changes of technologies. The milling process is one of the common manufacturing processes applied in the industries to produce engineering products. The vibration that occurs in the milling process can disturb the continuity of the process. The wired vibration monitoring system implemented in the manufacturing process needs to be replaced with the wireless monitoring system. Hence wireless vibration monitoring system is developed to solve the problem with wired monitoring systems where tucked cable and high cost are the main challenges of the wired monitoring system. The wireless monitoring system setup is built using three components: sensor node, monitoring node, and base station. Milling experiments with various depths of cut, feed rate, and spindle speed were conducted to examine the performance of the wireless monitoring system. The results indicate the wireless system shows similar data recorded by the wired system. The wireless vibration monitoring system can identify the effect of milling parameters such as depth of cut, feed rate, and spindle speed on the vibrations level. The effect of cut depth is more significant than spindle speed and feed rate in the defined parameters.","PeriodicalId":42785,"journal":{"name":"Journal of ICT Research and Applications","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wireless Vibration Monitoring System for Milling Process\",\"authors\":\"M. Fikri, K. Saptaji, Fijai Naja Azmi\",\"doi\":\"10.5614/itbj.ict.res.appl.2022.16.1.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The implementation of industrial revolution 4.0 in manufacturing industries is necessary to adapt to the rapid changes of technologies. The milling process is one of the common manufacturing processes applied in the industries to produce engineering products. The vibration that occurs in the milling process can disturb the continuity of the process. The wired vibration monitoring system implemented in the manufacturing process needs to be replaced with the wireless monitoring system. Hence wireless vibration monitoring system is developed to solve the problem with wired monitoring systems where tucked cable and high cost are the main challenges of the wired monitoring system. The wireless monitoring system setup is built using three components: sensor node, monitoring node, and base station. Milling experiments with various depths of cut, feed rate, and spindle speed were conducted to examine the performance of the wireless monitoring system. The results indicate the wireless system shows similar data recorded by the wired system. The wireless vibration monitoring system can identify the effect of milling parameters such as depth of cut, feed rate, and spindle speed on the vibrations level. The effect of cut depth is more significant than spindle speed and feed rate in the defined parameters.\",\"PeriodicalId\":42785,\"journal\":{\"name\":\"Journal of ICT Research and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of ICT Research and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5614/itbj.ict.res.appl.2022.16.1.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ICT Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/itbj.ict.res.appl.2022.16.1.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Wireless Vibration Monitoring System for Milling Process
The implementation of industrial revolution 4.0 in manufacturing industries is necessary to adapt to the rapid changes of technologies. The milling process is one of the common manufacturing processes applied in the industries to produce engineering products. The vibration that occurs in the milling process can disturb the continuity of the process. The wired vibration monitoring system implemented in the manufacturing process needs to be replaced with the wireless monitoring system. Hence wireless vibration monitoring system is developed to solve the problem with wired monitoring systems where tucked cable and high cost are the main challenges of the wired monitoring system. The wireless monitoring system setup is built using three components: sensor node, monitoring node, and base station. Milling experiments with various depths of cut, feed rate, and spindle speed were conducted to examine the performance of the wireless monitoring system. The results indicate the wireless system shows similar data recorded by the wired system. The wireless vibration monitoring system can identify the effect of milling parameters such as depth of cut, feed rate, and spindle speed on the vibrations level. The effect of cut depth is more significant than spindle speed and feed rate in the defined parameters.
期刊介绍:
Journal of ICT Research and Applications welcomes full research articles in the area of Information and Communication Technology from the following subject areas: Information Theory, Signal Processing, Electronics, Computer Network, Telecommunication, Wireless & Mobile Computing, Internet Technology, Multimedia, Software Engineering, Computer Science, Information System and Knowledge Management. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.