A. Davoudi, S. Daneshmand, V. Monfared, K. Mohammadzadeh
{"title":"纳米流体在锥形螺旋换热器中的传热数值模拟","authors":"A. Davoudi, S. Daneshmand, V. Monfared, K. Mohammadzadeh","doi":"10.1504/pcfd.2021.10034691","DOIUrl":null,"url":null,"abstract":"In this research article, the performance of a conical spiral heat exchanger with rectangular cross sections is numerically investigated by using two different nanofluids, aluminium oxide/water (Al2O3/water) and copper oxide/water (CuO/water) nanofluid. For this purpose, the effects of nanofluid concentration on the secondary flow, pressure drop, heat transfer and figure of merit (FOM) (the ratio of total heat transfer to the required fluid for pumping) are investigated. On the structured grid, the continuity, momentum, and energy equations are solved by employing a finite volume method. Results indicate that by enhancing the concentration of a nanofluid, the formed secondary flow gains more power. Based on the obtained results, the pressure drop increases with enhancing the nanofluid concentration along the tube. The heat transfer rate is slightly increased by adding nanoparticles to the base water fluid in very low concentrations, but with increasing the concentration of nanofluids, the heat transfer rate reduces. Moreover, FOM decreases with increasing nanofluid concentration. This variation is higher for copper oxide compared to alumina nanofluids at lower concentrations, while it is higher for alumina nanofluid at higher concentrations.","PeriodicalId":54552,"journal":{"name":"Progress in Computational Fluid Dynamics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Numerical simulation on heat transfer of nanofluid in conical spiral heat exchanger\",\"authors\":\"A. Davoudi, S. Daneshmand, V. Monfared, K. Mohammadzadeh\",\"doi\":\"10.1504/pcfd.2021.10034691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research article, the performance of a conical spiral heat exchanger with rectangular cross sections is numerically investigated by using two different nanofluids, aluminium oxide/water (Al2O3/water) and copper oxide/water (CuO/water) nanofluid. For this purpose, the effects of nanofluid concentration on the secondary flow, pressure drop, heat transfer and figure of merit (FOM) (the ratio of total heat transfer to the required fluid for pumping) are investigated. On the structured grid, the continuity, momentum, and energy equations are solved by employing a finite volume method. Results indicate that by enhancing the concentration of a nanofluid, the formed secondary flow gains more power. Based on the obtained results, the pressure drop increases with enhancing the nanofluid concentration along the tube. The heat transfer rate is slightly increased by adding nanoparticles to the base water fluid in very low concentrations, but with increasing the concentration of nanofluids, the heat transfer rate reduces. Moreover, FOM decreases with increasing nanofluid concentration. This variation is higher for copper oxide compared to alumina nanofluids at lower concentrations, while it is higher for alumina nanofluid at higher concentrations.\",\"PeriodicalId\":54552,\"journal\":{\"name\":\"Progress in Computational Fluid Dynamics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Computational Fluid Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1504/pcfd.2021.10034691\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Computational Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1504/pcfd.2021.10034691","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Numerical simulation on heat transfer of nanofluid in conical spiral heat exchanger
In this research article, the performance of a conical spiral heat exchanger with rectangular cross sections is numerically investigated by using two different nanofluids, aluminium oxide/water (Al2O3/water) and copper oxide/water (CuO/water) nanofluid. For this purpose, the effects of nanofluid concentration on the secondary flow, pressure drop, heat transfer and figure of merit (FOM) (the ratio of total heat transfer to the required fluid for pumping) are investigated. On the structured grid, the continuity, momentum, and energy equations are solved by employing a finite volume method. Results indicate that by enhancing the concentration of a nanofluid, the formed secondary flow gains more power. Based on the obtained results, the pressure drop increases with enhancing the nanofluid concentration along the tube. The heat transfer rate is slightly increased by adding nanoparticles to the base water fluid in very low concentrations, but with increasing the concentration of nanofluids, the heat transfer rate reduces. Moreover, FOM decreases with increasing nanofluid concentration. This variation is higher for copper oxide compared to alumina nanofluids at lower concentrations, while it is higher for alumina nanofluid at higher concentrations.
期刊介绍:
CFD is now considered an indispensable analysis/design tool in an ever-increasing range of industrial applications. Practical flow problems are often so complex that a high level of ingenuity is required. Thus, besides the development work in CFD, innovative CFD applications are also encouraged. PCFD''s ultimate goal is to provide a common platform for model/software developers and users by balanced international/interdisciplinary contributions, disseminating information relating to development/refinement of mathematical and numerical models, software tools and their innovative applications in CFD.
Topics covered include:
-Turbulence-
Two-phase flows-
Heat transfer-
Chemical reactions and combustion-
Acoustics-
Unsteady flows-
Free-surfaces-
Fluid-solid interaction-
Navier-Stokes solution techniques for incompressible and compressible flows-
Discretisation methods and schemes-
Convergence acceleration procedures-
Grid generation and adaptation techniques-
Mesh-free methods-
Distributed computing-
Other relevant topics