{"title":"含冰填裂隙冻结砂岩单轴压缩强度与开裂行为","authors":"H. Jia, L. Han, T. Zhao, Q. Sun, Xian-jun Tan","doi":"10.1002/ppp.2142","DOIUrl":null,"url":null,"abstract":"Understanding the mechanical properties of frozen flawed rock masses is fundamental to conducting safe rock engineering in frozen rock strata. However, there has been scarce research in this area, especially on key issues such as the strength and deformability of frozen flawed rock masses and failure processes under load. In this paper, frozen flawed sandstone was subjected to uniaxial compression and the cracking process was observed. The influences of flaw inclination angle and freezing temperature on the strength and cracking behavior of frozen flawed sandstone under load were determined. The results show that: (a) the strength of frozen flawed sandstone increases with increases in flaw inclination and decreases in temperature; (b) the flaw inclination has a dramatic influence on both the crack coalescence behavior and the final failure form of frozen flawed samples under compression; and (c) the significant influence of freezing temperature on the cracking behavior of frozen flawed sandstone is caused by the interaction between flaw ice and its surrounding rock. Strengthening of flawed sandstone by freezing results because (i) pore ice provides support and cohesion at the pore scale, while (ii) at the crack scale ice can support the flaw and resist its deformation during compression, and cementation of the ice–rock interface provides normal and tangential cracking resistance.","PeriodicalId":54629,"journal":{"name":"Permafrost and Periglacial Processes","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Strength and the cracking behavior of frozen sandstone containing ice‐filled flaws under uniaxial compression\",\"authors\":\"H. Jia, L. Han, T. Zhao, Q. Sun, Xian-jun Tan\",\"doi\":\"10.1002/ppp.2142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the mechanical properties of frozen flawed rock masses is fundamental to conducting safe rock engineering in frozen rock strata. However, there has been scarce research in this area, especially on key issues such as the strength and deformability of frozen flawed rock masses and failure processes under load. In this paper, frozen flawed sandstone was subjected to uniaxial compression and the cracking process was observed. The influences of flaw inclination angle and freezing temperature on the strength and cracking behavior of frozen flawed sandstone under load were determined. The results show that: (a) the strength of frozen flawed sandstone increases with increases in flaw inclination and decreases in temperature; (b) the flaw inclination has a dramatic influence on both the crack coalescence behavior and the final failure form of frozen flawed samples under compression; and (c) the significant influence of freezing temperature on the cracking behavior of frozen flawed sandstone is caused by the interaction between flaw ice and its surrounding rock. Strengthening of flawed sandstone by freezing results because (i) pore ice provides support and cohesion at the pore scale, while (ii) at the crack scale ice can support the flaw and resist its deformation during compression, and cementation of the ice–rock interface provides normal and tangential cracking resistance.\",\"PeriodicalId\":54629,\"journal\":{\"name\":\"Permafrost and Periglacial Processes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Permafrost and Periglacial Processes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/ppp.2142\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Permafrost and Periglacial Processes","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/ppp.2142","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Strength and the cracking behavior of frozen sandstone containing ice‐filled flaws under uniaxial compression
Understanding the mechanical properties of frozen flawed rock masses is fundamental to conducting safe rock engineering in frozen rock strata. However, there has been scarce research in this area, especially on key issues such as the strength and deformability of frozen flawed rock masses and failure processes under load. In this paper, frozen flawed sandstone was subjected to uniaxial compression and the cracking process was observed. The influences of flaw inclination angle and freezing temperature on the strength and cracking behavior of frozen flawed sandstone under load were determined. The results show that: (a) the strength of frozen flawed sandstone increases with increases in flaw inclination and decreases in temperature; (b) the flaw inclination has a dramatic influence on both the crack coalescence behavior and the final failure form of frozen flawed samples under compression; and (c) the significant influence of freezing temperature on the cracking behavior of frozen flawed sandstone is caused by the interaction between flaw ice and its surrounding rock. Strengthening of flawed sandstone by freezing results because (i) pore ice provides support and cohesion at the pore scale, while (ii) at the crack scale ice can support the flaw and resist its deformation during compression, and cementation of the ice–rock interface provides normal and tangential cracking resistance.
期刊介绍:
Permafrost and Periglacial Processes is an international journal dedicated to the rapid publication of scientific and technical papers concerned with earth surface cryogenic processes, landforms and sediments present in a variety of (Sub) Arctic, Antarctic and High Mountain environments. It provides an efficient vehicle of communication amongst those with an interest in the cold, non-glacial geosciences. The focus is on (1) original research based on geomorphological, hydrological, sedimentological, geotechnical and engineering aspects of these areas and (2) original research carried out upon relict features where the objective has been to reconstruct the nature of the processes and/or palaeoenvironments which gave rise to these features, as opposed to purely stratigraphical considerations. The journal also publishes short communications, reviews, discussions and book reviews. The high scientific standard, interdisciplinary character and worldwide representation of PPP are maintained by regional editorial support and a rigorous refereeing system.