纳米材料在未来生物纺织工业中的应用:获得智能生物纺织品的新视野

IF 4.1 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Frontiers in Nanotechnology Pub Date : 2022-12-02 DOI:10.3389/fnano.2022.1056498
Keyla Fuentes, Melissa Gómez, Hernán Rebolledo, José Miguel Figueroa, P. Zamora, Leopoldo Naranjo-Briceño
{"title":"纳米材料在未来生物纺织工业中的应用:获得智能生物纺织品的新视野","authors":"Keyla Fuentes, Melissa Gómez, Hernán Rebolledo, José Miguel Figueroa, P. Zamora, Leopoldo Naranjo-Briceño","doi":"10.3389/fnano.2022.1056498","DOIUrl":null,"url":null,"abstract":"For centuries, man has dominated the development of fibers and textiles to make clothing that protects them against environmental adversities, and gradually dissimilar cultural and ethnic identity traits have been created. Our garments are composed of natural elements such as animal leather, vegetable fibers, and synthetic textiles that result in ultra-resistant and durable materials. However, the textile industry has a non-sustainable character mainly because population growth will limit the use of natural resources, such as land and water, exclusively for food. At the same time, petrochemical-derived materials will gradually be replaced by more biodegradable alternatives due to their toxic accumulation in the local environment and their contribution to global climate change. The vast inventiveness of human-being is opening the possibility of replacing our clothes by mimicking, reproducing, and scaling up nature’s biosynthetic machinery through cutting-edge biotechnological approaches. Nevertheless, the new cosmovision of biotextiles must meet two requirements: 1) the appearance and performance of the clothes should be preserved to join the current textile market demand, and at the same time, 2) new functionalities should be incorporated into our clothes to embrace the impressive technological advances occurring day to day. In this regard, nanotechnological developments will be able to provide the desired properties so that the textile industry can provide bio-based materials enhanced with nanotechnology-based intelligent functionalities. This perspective article discloses nano-biotechnological approaches to address the challenge of dressing up future societies and new material consciousness.","PeriodicalId":34432,"journal":{"name":"Frontiers in Nanotechnology","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanomaterials in the future biotextile industry: A new cosmovision to obtain smart biotextiles\",\"authors\":\"Keyla Fuentes, Melissa Gómez, Hernán Rebolledo, José Miguel Figueroa, P. Zamora, Leopoldo Naranjo-Briceño\",\"doi\":\"10.3389/fnano.2022.1056498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For centuries, man has dominated the development of fibers and textiles to make clothing that protects them against environmental adversities, and gradually dissimilar cultural and ethnic identity traits have been created. Our garments are composed of natural elements such as animal leather, vegetable fibers, and synthetic textiles that result in ultra-resistant and durable materials. However, the textile industry has a non-sustainable character mainly because population growth will limit the use of natural resources, such as land and water, exclusively for food. At the same time, petrochemical-derived materials will gradually be replaced by more biodegradable alternatives due to their toxic accumulation in the local environment and their contribution to global climate change. The vast inventiveness of human-being is opening the possibility of replacing our clothes by mimicking, reproducing, and scaling up nature’s biosynthetic machinery through cutting-edge biotechnological approaches. Nevertheless, the new cosmovision of biotextiles must meet two requirements: 1) the appearance and performance of the clothes should be preserved to join the current textile market demand, and at the same time, 2) new functionalities should be incorporated into our clothes to embrace the impressive technological advances occurring day to day. In this regard, nanotechnological developments will be able to provide the desired properties so that the textile industry can provide bio-based materials enhanced with nanotechnology-based intelligent functionalities. This perspective article discloses nano-biotechnological approaches to address the challenge of dressing up future societies and new material consciousness.\",\"PeriodicalId\":34432,\"journal\":{\"name\":\"Frontiers in Nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2022-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fnano.2022.1056498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnano.2022.1056498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

几个世纪以来,人类一直主导着纤维和纺织品的发展,以制造保护他们免受环境逆境影响的服装,并逐渐形成了不同的文化和种族特征。我们的服装由动物皮革、植物纤维和合成纺织品等天然元素组成,可制成超耐磨耐用的材料。然而,纺织业具有不可持续的特点,主要是因为人口增长将限制土地和水等自然资源专门用于粮食。与此同时,石化衍生材料将逐渐被更可生物降解的替代品所取代,因为它们在当地环境中积累了有毒物质,并对全球气候变化做出了贡献。人类的巨大创造力正在通过尖端的生物技术方法,通过模仿、复制和扩大自然的生物合成机制,为更换我们的衣服开辟可能性。尽管如此,生物纺织品的新宇宙观必须满足两个要求:1)衣服的外观和性能应得到保护,以满足当前纺织市场的需求;同时,2)新功能应融入我们的衣服中,以迎接日益出现的令人印象深刻的技术进步。在这方面,纳米技术的发展将能够提供所需的性能,从而使纺织工业能够提供增强了基于纳米技术的智能功能的生物基材料。这篇前瞻性的文章揭示了纳米生物技术方法,以应对打扮未来社会和新物质意识的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nanomaterials in the future biotextile industry: A new cosmovision to obtain smart biotextiles
For centuries, man has dominated the development of fibers and textiles to make clothing that protects them against environmental adversities, and gradually dissimilar cultural and ethnic identity traits have been created. Our garments are composed of natural elements such as animal leather, vegetable fibers, and synthetic textiles that result in ultra-resistant and durable materials. However, the textile industry has a non-sustainable character mainly because population growth will limit the use of natural resources, such as land and water, exclusively for food. At the same time, petrochemical-derived materials will gradually be replaced by more biodegradable alternatives due to their toxic accumulation in the local environment and their contribution to global climate change. The vast inventiveness of human-being is opening the possibility of replacing our clothes by mimicking, reproducing, and scaling up nature’s biosynthetic machinery through cutting-edge biotechnological approaches. Nevertheless, the new cosmovision of biotextiles must meet two requirements: 1) the appearance and performance of the clothes should be preserved to join the current textile market demand, and at the same time, 2) new functionalities should be incorporated into our clothes to embrace the impressive technological advances occurring day to day. In this regard, nanotechnological developments will be able to provide the desired properties so that the textile industry can provide bio-based materials enhanced with nanotechnology-based intelligent functionalities. This perspective article discloses nano-biotechnological approaches to address the challenge of dressing up future societies and new material consciousness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Nanotechnology
Frontiers in Nanotechnology Engineering-Electrical and Electronic Engineering
CiteScore
7.10
自引率
0.00%
发文量
96
审稿时长
13 weeks
期刊最新文献
Interface-enhanced conductivities in surfactant-mediated, solution-grown ionic crystalline complexes Formation of two-dimensional laser-induced periodic surface structures on titanium by GHz burst mode femtosecond laser pulses Defects go green: using defects in nanomaterials for renewable energy and environmental sustainability Current status and applications of photovoltaic technology in wearable sensors: a review Single-layer MoS2 solid-state nanopores for coarse-grained sequencing of proteins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1