{"title":"基于LSTM-SA神经网络的风电机组运维数据超短期功率预测算法设计","authors":"Hong-Qiang You, Renyuan Jia, Xiaolei Chen, Lingxiang Huang","doi":"10.1063/5.0159574","DOIUrl":null,"url":null,"abstract":"Due to factors such as meteorology and geography, the generated power of wind turbines fluctuates frequently. In this way, power changes should be predicted in grid connection to take control measures in time. In this paper, an operation and maintenance data-driven LSTM-SA (long short-term memory with self-attention) prediction algorithm is designed to predict the ultra-short-term power of wind turbines. First, the wind turbine operation and maintenance data, including wind speed, blade deflection angle, yaw angle, humidity, and temperature, are subjected to feature selection by using the Pearson correlation coefficient method and the Lasso algorithm, thereby establishing the correlation between wind speed, blade deflection angle, and out power. Then, full-connect neural network is trained to establish a mapping model of wind speed, blade deflection angle, and out power. The power change rate k is calculated by the derivative of output power to wind speed. Finally, based on the historical power data and the power change rate k, the LSTM neural network power prediction model is trained to calculate the output power prediction value. In order to increase the training efficiency and reduce the delay, the self-attention mechanism is used to optimize the hidden layer of the LSTM model. The test results show that, compared with similar prediction algorithms, this algorithm has higher prediction accuracy, faster convergence speed, and better stability, which can solve the problem of accurately predicting ultra-short-term power when wind power training data is inadequate.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A design of ultra-short-term power prediction algorithm driven by wind turbine operation and maintenance data for LSTM-SA neural network\",\"authors\":\"Hong-Qiang You, Renyuan Jia, Xiaolei Chen, Lingxiang Huang\",\"doi\":\"10.1063/5.0159574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to factors such as meteorology and geography, the generated power of wind turbines fluctuates frequently. In this way, power changes should be predicted in grid connection to take control measures in time. In this paper, an operation and maintenance data-driven LSTM-SA (long short-term memory with self-attention) prediction algorithm is designed to predict the ultra-short-term power of wind turbines. First, the wind turbine operation and maintenance data, including wind speed, blade deflection angle, yaw angle, humidity, and temperature, are subjected to feature selection by using the Pearson correlation coefficient method and the Lasso algorithm, thereby establishing the correlation between wind speed, blade deflection angle, and out power. Then, full-connect neural network is trained to establish a mapping model of wind speed, blade deflection angle, and out power. The power change rate k is calculated by the derivative of output power to wind speed. Finally, based on the historical power data and the power change rate k, the LSTM neural network power prediction model is trained to calculate the output power prediction value. In order to increase the training efficiency and reduce the delay, the self-attention mechanism is used to optimize the hidden layer of the LSTM model. The test results show that, compared with similar prediction algorithms, this algorithm has higher prediction accuracy, faster convergence speed, and better stability, which can solve the problem of accurately predicting ultra-short-term power when wind power training data is inadequate.\",\"PeriodicalId\":16953,\"journal\":{\"name\":\"Journal of Renewable and Sustainable Energy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Renewable and Sustainable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0159574\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable and Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0159574","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
A design of ultra-short-term power prediction algorithm driven by wind turbine operation and maintenance data for LSTM-SA neural network
Due to factors such as meteorology and geography, the generated power of wind turbines fluctuates frequently. In this way, power changes should be predicted in grid connection to take control measures in time. In this paper, an operation and maintenance data-driven LSTM-SA (long short-term memory with self-attention) prediction algorithm is designed to predict the ultra-short-term power of wind turbines. First, the wind turbine operation and maintenance data, including wind speed, blade deflection angle, yaw angle, humidity, and temperature, are subjected to feature selection by using the Pearson correlation coefficient method and the Lasso algorithm, thereby establishing the correlation between wind speed, blade deflection angle, and out power. Then, full-connect neural network is trained to establish a mapping model of wind speed, blade deflection angle, and out power. The power change rate k is calculated by the derivative of output power to wind speed. Finally, based on the historical power data and the power change rate k, the LSTM neural network power prediction model is trained to calculate the output power prediction value. In order to increase the training efficiency and reduce the delay, the self-attention mechanism is used to optimize the hidden layer of the LSTM model. The test results show that, compared with similar prediction algorithms, this algorithm has higher prediction accuracy, faster convergence speed, and better stability, which can solve the problem of accurately predicting ultra-short-term power when wind power training data is inadequate.
期刊介绍:
The Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields.
Topics covered include:
Renewable energy economics and policy
Renewable energy resource assessment
Solar energy: photovoltaics, solar thermal energy, solar energy for fuels
Wind energy: wind farms, rotors and blades, on- and offshore wind conditions, aerodynamics, fluid dynamics
Bioenergy: biofuels, biomass conversion, artificial photosynthesis
Distributed energy generation: rooftop PV, distributed fuel cells, distributed wind, micro-hydrogen power generation
Power distribution & systems modeling: power electronics and controls, smart grid
Energy efficient buildings: smart windows, PV, wind, power management
Energy conversion: flexoelectric, piezoelectric, thermoelectric, other technologies
Energy storage: batteries, supercapacitors, hydrogen storage, other fuels
Fuel cells: proton exchange membrane cells, solid oxide cells, hybrid fuel cells, other
Marine and hydroelectric energy: dams, tides, waves, other
Transportation: alternative vehicle technologies, plug-in technologies, other
Geothermal energy