基于LSTM-SA神经网络的风电机组运维数据超短期功率预测算法设计

IF 1.9 4区 工程技术 Q4 ENERGY & FUELS Journal of Renewable and Sustainable Energy Pub Date : 2023-07-01 DOI:10.1063/5.0159574
Hong-Qiang You, Renyuan Jia, Xiaolei Chen, Lingxiang Huang
{"title":"基于LSTM-SA神经网络的风电机组运维数据超短期功率预测算法设计","authors":"Hong-Qiang You, Renyuan Jia, Xiaolei Chen, Lingxiang Huang","doi":"10.1063/5.0159574","DOIUrl":null,"url":null,"abstract":"Due to factors such as meteorology and geography, the generated power of wind turbines fluctuates frequently. In this way, power changes should be predicted in grid connection to take control measures in time. In this paper, an operation and maintenance data-driven LSTM-SA (long short-term memory with self-attention) prediction algorithm is designed to predict the ultra-short-term power of wind turbines. First, the wind turbine operation and maintenance data, including wind speed, blade deflection angle, yaw angle, humidity, and temperature, are subjected to feature selection by using the Pearson correlation coefficient method and the Lasso algorithm, thereby establishing the correlation between wind speed, blade deflection angle, and out power. Then, full-connect neural network is trained to establish a mapping model of wind speed, blade deflection angle, and out power. The power change rate k is calculated by the derivative of output power to wind speed. Finally, based on the historical power data and the power change rate k, the LSTM neural network power prediction model is trained to calculate the output power prediction value. In order to increase the training efficiency and reduce the delay, the self-attention mechanism is used to optimize the hidden layer of the LSTM model. The test results show that, compared with similar prediction algorithms, this algorithm has higher prediction accuracy, faster convergence speed, and better stability, which can solve the problem of accurately predicting ultra-short-term power when wind power training data is inadequate.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A design of ultra-short-term power prediction algorithm driven by wind turbine operation and maintenance data for LSTM-SA neural network\",\"authors\":\"Hong-Qiang You, Renyuan Jia, Xiaolei Chen, Lingxiang Huang\",\"doi\":\"10.1063/5.0159574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to factors such as meteorology and geography, the generated power of wind turbines fluctuates frequently. In this way, power changes should be predicted in grid connection to take control measures in time. In this paper, an operation and maintenance data-driven LSTM-SA (long short-term memory with self-attention) prediction algorithm is designed to predict the ultra-short-term power of wind turbines. First, the wind turbine operation and maintenance data, including wind speed, blade deflection angle, yaw angle, humidity, and temperature, are subjected to feature selection by using the Pearson correlation coefficient method and the Lasso algorithm, thereby establishing the correlation between wind speed, blade deflection angle, and out power. Then, full-connect neural network is trained to establish a mapping model of wind speed, blade deflection angle, and out power. The power change rate k is calculated by the derivative of output power to wind speed. Finally, based on the historical power data and the power change rate k, the LSTM neural network power prediction model is trained to calculate the output power prediction value. In order to increase the training efficiency and reduce the delay, the self-attention mechanism is used to optimize the hidden layer of the LSTM model. The test results show that, compared with similar prediction algorithms, this algorithm has higher prediction accuracy, faster convergence speed, and better stability, which can solve the problem of accurately predicting ultra-short-term power when wind power training data is inadequate.\",\"PeriodicalId\":16953,\"journal\":{\"name\":\"Journal of Renewable and Sustainable Energy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Renewable and Sustainable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0159574\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable and Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0159574","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

由于气象和地理等因素,风力发电机的发电量波动频繁。通过这种方式,应预测电网连接中的功率变化,以便及时采取控制措施。本文设计了一种运行和维护数据驱动的LSTM-SA(具有自注意的长短期记忆)预测算法来预测风力涡轮机的超短期功率。首先,使用Pearson相关系数法和Lasso算法对包括风速、叶片偏转角、偏航角、湿度和温度在内的风机运行和维护数据进行特征选择,从而建立风速、叶片偏转角和输出功率之间的相关性。然后,对全连接神经网络进行训练,建立风速、叶片偏转角和输出功率的映射模型。功率变化率k通过输出功率对风速的导数来计算。最后,基于历史功率数据和功率变化率k,训练LSTM神经网络功率预测模型来计算输出功率预测值。为了提高训练效率和减少延迟,使用自注意机制对LSTM模型的隐藏层进行优化。测试结果表明,与类似的预测算法相比,该算法具有更高的预测精度、更快的收敛速度和更好的稳定性,可以解决风电训练数据不足时超短期功率的准确预测问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A design of ultra-short-term power prediction algorithm driven by wind turbine operation and maintenance data for LSTM-SA neural network
Due to factors such as meteorology and geography, the generated power of wind turbines fluctuates frequently. In this way, power changes should be predicted in grid connection to take control measures in time. In this paper, an operation and maintenance data-driven LSTM-SA (long short-term memory with self-attention) prediction algorithm is designed to predict the ultra-short-term power of wind turbines. First, the wind turbine operation and maintenance data, including wind speed, blade deflection angle, yaw angle, humidity, and temperature, are subjected to feature selection by using the Pearson correlation coefficient method and the Lasso algorithm, thereby establishing the correlation between wind speed, blade deflection angle, and out power. Then, full-connect neural network is trained to establish a mapping model of wind speed, blade deflection angle, and out power. The power change rate k is calculated by the derivative of output power to wind speed. Finally, based on the historical power data and the power change rate k, the LSTM neural network power prediction model is trained to calculate the output power prediction value. In order to increase the training efficiency and reduce the delay, the self-attention mechanism is used to optimize the hidden layer of the LSTM model. The test results show that, compared with similar prediction algorithms, this algorithm has higher prediction accuracy, faster convergence speed, and better stability, which can solve the problem of accurately predicting ultra-short-term power when wind power training data is inadequate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Renewable and Sustainable Energy
Journal of Renewable and Sustainable Energy ENERGY & FUELS-ENERGY & FUELS
CiteScore
4.30
自引率
12.00%
发文量
122
审稿时长
4.2 months
期刊介绍: The Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields. Topics covered include: Renewable energy economics and policy Renewable energy resource assessment Solar energy: photovoltaics, solar thermal energy, solar energy for fuels Wind energy: wind farms, rotors and blades, on- and offshore wind conditions, aerodynamics, fluid dynamics Bioenergy: biofuels, biomass conversion, artificial photosynthesis Distributed energy generation: rooftop PV, distributed fuel cells, distributed wind, micro-hydrogen power generation Power distribution & systems modeling: power electronics and controls, smart grid Energy efficient buildings: smart windows, PV, wind, power management Energy conversion: flexoelectric, piezoelectric, thermoelectric, other technologies Energy storage: batteries, supercapacitors, hydrogen storage, other fuels Fuel cells: proton exchange membrane cells, solid oxide cells, hybrid fuel cells, other Marine and hydroelectric energy: dams, tides, waves, other Transportation: alternative vehicle technologies, plug-in technologies, other Geothermal energy
期刊最新文献
High areal-capacitance based extremely stable flexible supercapacitors using binder-free exfoliated graphite paper electrode Case study of a bore wind-ramp event from lidar measurements and HRRR simulations over ARM Southern Great Plains Barriers and variable spacing enhance convective cooling and increase power output in solar PV plants Two three-dimensional super-Gaussian wake models for hilly terrain Evaluation of wind resource uncertainty on energy production estimates for offshore wind farms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1