海拔变化对埃塞俄比亚南部奥莫区森林土壤理化性质的影响

IF 2.1 Q3 SOIL SCIENCE Applied and Environmental Soil Science Pub Date : 2023-05-27 DOI:10.1155/2023/7305618
M. Hailemariam, Z. Woldu, Zemede Asfaw Z. Asfaw, E. Lulekal
{"title":"海拔变化对埃塞俄比亚南部奥莫区森林土壤理化性质的影响","authors":"M. Hailemariam, Z. Woldu, Zemede Asfaw Z. Asfaw, E. Lulekal","doi":"10.1155/2023/7305618","DOIUrl":null,"url":null,"abstract":"<jats:p>The assessment of the distribution of soil physicochemical properties provides basic information for our understanding of the soils to grow crops and sustain forests and grasslands. The changes in soil physicochemical properties along elevational gradients were studied in a less accessible Sida Forest, southern Ethiopia. Hence, the present study was conducted to assess the distribution of soil physicochemical properties along the elevational gradients and to evaluate the fertility status of the soil. Data on soil physicochemical properties were collected from five points (four from each corner and one from the center) of the main plot. A pit of 20 cm × 20 cm was dug at a depth of 0–30 cm and a kilogram of composite soil samples was brought to the Wolkite Soil Testing Laboratory for physicochemical analysis. The results revealed that the physicochemical properties of the collected soil samples show a significant correlation with elevation changes. Sand had a significantly negative correlation and variation with elevation; it decreases as elevation increases with the rate of correlation (r = −0.44<jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <msup>\n <mrow />\n <mrow>\n <mi>∗</mi>\n <mi>∗</mi>\n </mrow>\n </msup>\n </math>\n </jats:inline-formula>, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mi>P</mi>\n <mo>≤</mo>\n <mn>0.001</mn>\n </math>\n </jats:inline-formula>). However, silt had a nonsignificantly positive (r = 0.20, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mi>P</mi>\n <mo><</mo>\n <mn>0.079</mn>\n </math>\n </jats:inline-formula>) correlation to the elevation, while clay had a significantly positive correlation to elevation, and it increases as elevation increases with the rate of correlation coefficient (r = 0.40<jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <msup>\n <mrow />\n <mrow>\n <mi>∗</mi>\n <mi>∗</mi>\n </mrow>\n </msup>\n </math>\n </jats:inline-formula>, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mi>P</mi>\n <mo>≤</mo>\n <mn>0.001</mn>\n </math>\n </jats:inline-formula>). Soil OC, OM, TN, CEC, and exchangeable Mg2+ had significant positive correlation to the elevation; they increase as elevation increases with the rate of correlation coefficient (r = 0.42<jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <msup>\n <mrow />\n <mrow>\n <mi>∗</mi>\n <mi>∗</mi>\n </mrow>\n </msup>\n </math>\n </jats:inline-formula>, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <mi>P</mi>\n <mo>≤</mo>\n <mn>0.001</mn>\n </math>\n </jats:inline-formula>), (r = 0.41<jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M8\">\n <msup>\n <mrow />\n <mrow>\n <mi>∗</mi>\n <mi>∗</mi>\n </mrow>\n </msup>\n </math>\n </jats:inline-formula>, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M9\">\n <mi>P</mi>\n <mo>≤</mo>\n <mn>0.001</mn>\n </math>\n </jats:inline-formula>), (r = 0.44<jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M10\">\n <msup>\n <mrow />\n <mrow>\n <mi>∗</mi>\n <mi>∗</mi>\n </mrow>\n </msup>\n </math>\n </jats:inline-formula>, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M11\">\n <mi>P</mi>\n <mo>≤</mo>\n <mn>0.001</mn>\n </math>\n </jats:inline-formula>), (r = 0.34<jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M12\">\n <msup>\n <mrow />\n <mrow>\n <mi>∗</mi>\n <mi>∗</mi>\n </mrow>\n </msup>\n </math>\n </jats:inline-formula>, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M13\">\n <mi>P</mi>\n <mo><</mo>\n <mn>0.002</mn>\n </math>\n </jats:inline-formula>), and (r = 0.27<jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M14\">\n <msup>\n <mrow />\n <mi>∗</mi>\n </msup>\n </math>\n </jats:inline-formula>, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M15\">\n <mi>P</mi>\n <mo><</mo>\n <mn>0.014</mn>\n </math>\n </jats:inline-formula>), respectively. While BD, pH, EC, Av. P, exchangeable Ca2+, and exchangeable K+ had a nonsignificant negative correlation to the elevation, they decrease as elevation increases with the rate of correlation (r = −0.70<jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M16\">\n <msup>\n <mrow />\n <mrow>\n <mi>∗</mi>\n <mi>∗</mi>\n </mrow>\n </msup>\n </math>\n </jats:inline-formula>, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M17\">\n <mi>P</mi>\n <mo><</mo>\n <mn>0.134</mn>\n </math>\n </jats:inline-formula>), (r = −0.20, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M18\">\n <mi>P</mi>\n <mo><</mo>\n <mn>0.075</mn>\n </math>\n </jats:inline-formula>), (r = −0.05, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M19\">\n <mi>P</mi>\n <mo><</mo>\n <mn>0.683</mn>\n </math>\n </jats:inline-formula>), (r = −0.04, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M20\">\n <mi>P</mi>\n <mo><</mo>\n <mn>0.701</mn>\n </math>\n </jats:inline-formula>), (r = −0.04, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M21\">\n <mi>P</mi>\n <mo><</mo>\n <mn>0.693</mn>\n </math>\n </jats:inline-formula>), and (r = −0.053, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M22\">\n <mi>P</mi>\n <mo><</mo>\n <mn>0.693</mn>\n </math>\n </jats:inline-formula>), respectively. This study attempted to provide information on the impact of elevation on soil’s physicochemical properties. Given that, the soil’s physicochemical properties exhibit variation with elevation changes.</jats:p>","PeriodicalId":38438,"journal":{"name":"Applied and Environmental Soil Science","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Impact of Elevation Change on the Physicochemical Properties of Forest Soil in South Omo Zone, Southern Ethiopia\",\"authors\":\"M. Hailemariam, Z. Woldu, Zemede Asfaw Z. Asfaw, E. Lulekal\",\"doi\":\"10.1155/2023/7305618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>The assessment of the distribution of soil physicochemical properties provides basic information for our understanding of the soils to grow crops and sustain forests and grasslands. The changes in soil physicochemical properties along elevational gradients were studied in a less accessible Sida Forest, southern Ethiopia. Hence, the present study was conducted to assess the distribution of soil physicochemical properties along the elevational gradients and to evaluate the fertility status of the soil. Data on soil physicochemical properties were collected from five points (four from each corner and one from the center) of the main plot. A pit of 20 cm × 20 cm was dug at a depth of 0–30 cm and a kilogram of composite soil samples was brought to the Wolkite Soil Testing Laboratory for physicochemical analysis. The results revealed that the physicochemical properties of the collected soil samples show a significant correlation with elevation changes. Sand had a significantly negative correlation and variation with elevation; it decreases as elevation increases with the rate of correlation (r = −0.44<jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M1\\\">\\n <msup>\\n <mrow />\\n <mrow>\\n <mi>∗</mi>\\n <mi>∗</mi>\\n </mrow>\\n </msup>\\n </math>\\n </jats:inline-formula>, <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M2\\\">\\n <mi>P</mi>\\n <mo>≤</mo>\\n <mn>0.001</mn>\\n </math>\\n </jats:inline-formula>). However, silt had a nonsignificantly positive (r = 0.20, <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M3\\\">\\n <mi>P</mi>\\n <mo><</mo>\\n <mn>0.079</mn>\\n </math>\\n </jats:inline-formula>) correlation to the elevation, while clay had a significantly positive correlation to elevation, and it increases as elevation increases with the rate of correlation coefficient (r = 0.40<jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M4\\\">\\n <msup>\\n <mrow />\\n <mrow>\\n <mi>∗</mi>\\n <mi>∗</mi>\\n </mrow>\\n </msup>\\n </math>\\n </jats:inline-formula>, <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M5\\\">\\n <mi>P</mi>\\n <mo>≤</mo>\\n <mn>0.001</mn>\\n </math>\\n </jats:inline-formula>). Soil OC, OM, TN, CEC, and exchangeable Mg2+ had significant positive correlation to the elevation; they increase as elevation increases with the rate of correlation coefficient (r = 0.42<jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M6\\\">\\n <msup>\\n <mrow />\\n <mrow>\\n <mi>∗</mi>\\n <mi>∗</mi>\\n </mrow>\\n </msup>\\n </math>\\n </jats:inline-formula>, <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M7\\\">\\n <mi>P</mi>\\n <mo>≤</mo>\\n <mn>0.001</mn>\\n </math>\\n </jats:inline-formula>), (r = 0.41<jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M8\\\">\\n <msup>\\n <mrow />\\n <mrow>\\n <mi>∗</mi>\\n <mi>∗</mi>\\n </mrow>\\n </msup>\\n </math>\\n </jats:inline-formula>, <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M9\\\">\\n <mi>P</mi>\\n <mo>≤</mo>\\n <mn>0.001</mn>\\n </math>\\n </jats:inline-formula>), (r = 0.44<jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M10\\\">\\n <msup>\\n <mrow />\\n <mrow>\\n <mi>∗</mi>\\n <mi>∗</mi>\\n </mrow>\\n </msup>\\n </math>\\n </jats:inline-formula>, <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M11\\\">\\n <mi>P</mi>\\n <mo>≤</mo>\\n <mn>0.001</mn>\\n </math>\\n </jats:inline-formula>), (r = 0.34<jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M12\\\">\\n <msup>\\n <mrow />\\n <mrow>\\n <mi>∗</mi>\\n <mi>∗</mi>\\n </mrow>\\n </msup>\\n </math>\\n </jats:inline-formula>, <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M13\\\">\\n <mi>P</mi>\\n <mo><</mo>\\n <mn>0.002</mn>\\n </math>\\n </jats:inline-formula>), and (r = 0.27<jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M14\\\">\\n <msup>\\n <mrow />\\n <mi>∗</mi>\\n </msup>\\n </math>\\n </jats:inline-formula>, <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M15\\\">\\n <mi>P</mi>\\n <mo><</mo>\\n <mn>0.014</mn>\\n </math>\\n </jats:inline-formula>), respectively. While BD, pH, EC, Av. P, exchangeable Ca2+, and exchangeable K+ had a nonsignificant negative correlation to the elevation, they decrease as elevation increases with the rate of correlation (r = −0.70<jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M16\\\">\\n <msup>\\n <mrow />\\n <mrow>\\n <mi>∗</mi>\\n <mi>∗</mi>\\n </mrow>\\n </msup>\\n </math>\\n </jats:inline-formula>, <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M17\\\">\\n <mi>P</mi>\\n <mo><</mo>\\n <mn>0.134</mn>\\n </math>\\n </jats:inline-formula>), (r = −0.20, <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M18\\\">\\n <mi>P</mi>\\n <mo><</mo>\\n <mn>0.075</mn>\\n </math>\\n </jats:inline-formula>), (r = −0.05, <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M19\\\">\\n <mi>P</mi>\\n <mo><</mo>\\n <mn>0.683</mn>\\n </math>\\n </jats:inline-formula>), (r = −0.04, <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M20\\\">\\n <mi>P</mi>\\n <mo><</mo>\\n <mn>0.701</mn>\\n </math>\\n </jats:inline-formula>), (r = −0.04, <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M21\\\">\\n <mi>P</mi>\\n <mo><</mo>\\n <mn>0.693</mn>\\n </math>\\n </jats:inline-formula>), and (r = −0.053, <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M22\\\">\\n <mi>P</mi>\\n <mo><</mo>\\n <mn>0.693</mn>\\n </math>\\n </jats:inline-formula>), respectively. This study attempted to provide information on the impact of elevation on soil’s physicochemical properties. Given that, the soil’s physicochemical properties exhibit variation with elevation changes.</jats:p>\",\"PeriodicalId\":38438,\"journal\":{\"name\":\"Applied and Environmental Soil Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Environmental Soil Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/7305618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Environmental Soil Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/7305618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 1

摘要

土壤理化性质分布的评价,为认识土壤对作物生长和维持森林草原的作用提供了基础信息。研究了埃塞俄比亚南部西达森林土壤理化性质沿海拔梯度的变化。因此,本研究旨在评估土壤理化性质沿海拔梯度的分布,并评价土壤的肥力状况。在主地块的5个点(每个角4个点,中心1个点)采集土壤理化性质数据。挖一个20 cm × 20 cm的坑,深度0 ~ 30 cm,将1公斤复合土样送到Wolkite土壤测试实验室进行理化分析。结果表明,采收土壤样品的理化性质与海拔变化有显著的相关性。沙粒与海拔高度呈显著负相关;随海拔升高而降低(r = - 0.44 * *, P≤0.001)。粉土与海拔高度呈不显著正相关(r = 0.20, P 0.079),而粘土与海拔高度呈显著正相关。随海拔升高而增加,相关系数率为(r = 0.40∗∗,P≤0.001)。土壤OC、OM、TN、CEC和交换态Mg2+与海拔高度呈显著正相关;随海拔升高而增加,相关系数(r = 0.42∗∗,P≤0.001);(r = 0.41∗,P≤0.001);(r = 0.44∗,P≤0.001);(r = 0.34∗,P = 0.002);和(r = 0.27 *, P 0.014)。BD、pH、EC、Av. P、交换性Ca2+和交换性K+与海拔高度呈不显著负相关,但随着海拔高度的升高而降低(r = - 0.70∗∗;P 0。 134), (r = - 0.20, P 0.075), (r = - 0.05, P 0.683), (r = - 0.04,P 0.701), (r = - 0.04, P 0.693), (r = - 0.053, P 0.693)。本研究试图提供海拔对土壤理化性质影响的信息。因此,土壤的物理化学性质随海拔的变化而变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of Elevation Change on the Physicochemical Properties of Forest Soil in South Omo Zone, Southern Ethiopia
The assessment of the distribution of soil physicochemical properties provides basic information for our understanding of the soils to grow crops and sustain forests and grasslands. The changes in soil physicochemical properties along elevational gradients were studied in a less accessible Sida Forest, southern Ethiopia. Hence, the present study was conducted to assess the distribution of soil physicochemical properties along the elevational gradients and to evaluate the fertility status of the soil. Data on soil physicochemical properties were collected from five points (four from each corner and one from the center) of the main plot. A pit of 20 cm × 20 cm was dug at a depth of 0–30 cm and a kilogram of composite soil samples was brought to the Wolkite Soil Testing Laboratory for physicochemical analysis. The results revealed that the physicochemical properties of the collected soil samples show a significant correlation with elevation changes. Sand had a significantly negative correlation and variation with elevation; it decreases as elevation increases with the rate of correlation (r = −0.44 , P 0.001 ). However, silt had a nonsignificantly positive (r = 0.20, P < 0.079 ) correlation to the elevation, while clay had a significantly positive correlation to elevation, and it increases as elevation increases with the rate of correlation coefficient (r = 0.40 , P 0.001 ). Soil OC, OM, TN, CEC, and exchangeable Mg2+ had significant positive correlation to the elevation; they increase as elevation increases with the rate of correlation coefficient (r = 0.42 , P 0.001 ), (r = 0.41 , P 0.001 ), (r = 0.44 , P 0.001 ), (r = 0.34 , P < 0.002 ), and (r = 0.27 , P < 0.014 ), respectively. While BD, pH, EC, Av. P, exchangeable Ca2+, and exchangeable K+ had a nonsignificant negative correlation to the elevation, they decrease as elevation increases with the rate of correlation (r = −0.70 , P < 0.134 ), (r = −0.20, P < 0.075 ), (r = −0.05, P < 0.683 ), (r = −0.04, P < 0.701 ), (r = −0.04, P < 0.693 ), and (r = −0.053, P < 0.693 ), respectively. This study attempted to provide information on the impact of elevation on soil’s physicochemical properties. Given that, the soil’s physicochemical properties exhibit variation with elevation changes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied and Environmental Soil Science
Applied and Environmental Soil Science Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
4.00
自引率
4.50%
发文量
55
审稿时长
18 weeks
期刊介绍: Applied and Environmental Soil Science is a peer-reviewed, Open Access journal that publishes research and review articles in the field of soil science. Its coverage reflects the multidisciplinary nature of soil science, and focuses on studies that take account of the dynamics and spatial heterogeneity of processes in soil. Basic studies of the physical, chemical, biochemical, and biological properties of soil, innovations in soil analysis, and the development of statistical tools will be published. Among the major environmental issues addressed will be: -Pollution by trace elements and nutrients in excess- Climate change and global warming- Soil stability and erosion- Water quality- Quality of agricultural crops- Plant nutrition- Soil hydrology- Biodiversity of soils- Role of micro- and mesofauna in soil
期刊最新文献
Assessment of Health Risks in Wheat Crop Irrigated by Manka Canal, Dera Ghazi Khan, Pakistan Can Soil Compaction Alter Morphophysiological Responses and Soybean Yield under Application of Selective Herbicides? Assessment of Selected Physicochemical Properties of Soils under Different Land Uses and Topographic Positions at Gola Wachu Subwatershed, Eastern Ethiopia Soil Fertility Status as Influenced by Slope Gradient and Land Use Types in Southern Ethiopia Effect of Compost, Blended (NPSZn), and Potassium Chloride Fertilizers on Soil Bulk Density and Moisture Content in Two Soil Textural Groups of Tigray, Northern Ethiopia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1