Brenda J. Alvarez-Chavez, S. Godbout, Étienne Le Roux, J. Palacios, V. Raghavan
{"title":"通过快速热解和分馏冷凝概念提高生物油收率和质量","authors":"Brenda J. Alvarez-Chavez, S. Godbout, Étienne Le Roux, J. Palacios, V. Raghavan","doi":"10.18331/brj2019.6.4.2","DOIUrl":null,"url":null,"abstract":"The influence of operating conditions on the yield and quality of bio-oil obtained from black spruce wood mixture was studied using an auger reactor. Fast pyrolysis optimization through response surface analysis was carried out with four variables: pyrolysis temperature, solids residence time, nitrogen flow, and temperature of first stage of condensation. The optimal conditions obtained for bio-oil production were 555°C, 129 s, 6.9 L/min, and 120°C, respectively. The product yields were 38.61 wt.% of biochar, 25.39 wt.% of liquid, and 36.52 wt.% of non-condensable gases. Two liquid products were produced at the exit of the two condensers, following the concept of fractional condensation. The oily phase yield recovered in the first condenser was 10.59 wt.%, with a 16.86 wt.% of moisture content. Physical properties of the oily phase were analyzed and compared with the ASTM standard D7544-12. Qualitative identification of chemical compounds was carried out for the oily phase which helped in pyrolysis optimization for the bio-oil production targeted towards its use as fuel in commercial burners. In addition, the oil produced here is one of the lowest in water and solids content, attributable to the unique feature of auger reactors without the need for additional treatments.","PeriodicalId":46938,"journal":{"name":"Biofuel Research Journal-BRJ","volume":" ","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Bio-oil yield and quality enhancement through fast pyrolysis and fractional condensation concepts\",\"authors\":\"Brenda J. Alvarez-Chavez, S. Godbout, Étienne Le Roux, J. Palacios, V. Raghavan\",\"doi\":\"10.18331/brj2019.6.4.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The influence of operating conditions on the yield and quality of bio-oil obtained from black spruce wood mixture was studied using an auger reactor. Fast pyrolysis optimization through response surface analysis was carried out with four variables: pyrolysis temperature, solids residence time, nitrogen flow, and temperature of first stage of condensation. The optimal conditions obtained for bio-oil production were 555°C, 129 s, 6.9 L/min, and 120°C, respectively. The product yields were 38.61 wt.% of biochar, 25.39 wt.% of liquid, and 36.52 wt.% of non-condensable gases. Two liquid products were produced at the exit of the two condensers, following the concept of fractional condensation. The oily phase yield recovered in the first condenser was 10.59 wt.%, with a 16.86 wt.% of moisture content. Physical properties of the oily phase were analyzed and compared with the ASTM standard D7544-12. Qualitative identification of chemical compounds was carried out for the oily phase which helped in pyrolysis optimization for the bio-oil production targeted towards its use as fuel in commercial burners. In addition, the oil produced here is one of the lowest in water and solids content, attributable to the unique feature of auger reactors without the need for additional treatments.\",\"PeriodicalId\":46938,\"journal\":{\"name\":\"Biofuel Research Journal-BRJ\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofuel Research Journal-BRJ\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18331/brj2019.6.4.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofuel Research Journal-BRJ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18331/brj2019.6.4.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Bio-oil yield and quality enhancement through fast pyrolysis and fractional condensation concepts
The influence of operating conditions on the yield and quality of bio-oil obtained from black spruce wood mixture was studied using an auger reactor. Fast pyrolysis optimization through response surface analysis was carried out with four variables: pyrolysis temperature, solids residence time, nitrogen flow, and temperature of first stage of condensation. The optimal conditions obtained for bio-oil production were 555°C, 129 s, 6.9 L/min, and 120°C, respectively. The product yields were 38.61 wt.% of biochar, 25.39 wt.% of liquid, and 36.52 wt.% of non-condensable gases. Two liquid products were produced at the exit of the two condensers, following the concept of fractional condensation. The oily phase yield recovered in the first condenser was 10.59 wt.%, with a 16.86 wt.% of moisture content. Physical properties of the oily phase were analyzed and compared with the ASTM standard D7544-12. Qualitative identification of chemical compounds was carried out for the oily phase which helped in pyrolysis optimization for the bio-oil production targeted towards its use as fuel in commercial burners. In addition, the oil produced here is one of the lowest in water and solids content, attributable to the unique feature of auger reactors without the need for additional treatments.
期刊介绍:
Biofuel Research Journal (BRJ) is a leading, peer-reviewed academic journal that focuses on high-quality research in the field of biofuels, bioproducts, and biomass-derived materials and technologies. The journal's primary goal is to contribute to the advancement of knowledge and understanding in the areas of sustainable energy solutions, environmental protection, and the circular economy. BRJ accepts various types of articles, including original research papers, review papers, case studies, short communications, and hypotheses. The specific areas covered by the journal include Biofuels and Bioproducts, Biomass Valorization, Biomass-Derived Materials for Energy and Storage Systems, Techno-Economic and Environmental Assessments, Climate Change and Sustainability, and Biofuels and Bioproducts in Circular Economy, among others. BRJ actively encourages interdisciplinary collaborations among researchers, engineers, scientists, policymakers, and industry experts to facilitate the adoption of sustainable energy solutions and promote a greener future. The journal maintains rigorous standards of peer review and editorial integrity to ensure that only impactful and high-quality research is published. Currently, BRJ is indexed by several prominent databases such as Web of Science, CAS Databases, Directory of Open Access Journals, Scimago Journal Rank, Scopus, Google Scholar, Elektronische Zeitschriftenbibliothek EZB, et al.