超声成像在生物医学应用中的最新进展综述

C. Miyasaka, Sanchiro Yoshida
{"title":"超声成像在生物医学应用中的最新进展综述","authors":"C. Miyasaka, Sanchiro Yoshida","doi":"10.2174/1874440001812010133","DOIUrl":null,"url":null,"abstract":"This paper discusses the application of acoustic microscopy to the detection of cancerous cells. Acoustic microscopy is a welldeveloped technique but the application to biological tissues is challenging. Acoustic microscopy images abnormality based on the difference in the acoustic impedance from the background. One of the difficulties in the biomedical applications is that since both normal and abnormal cells consist of mostly water, their acoustic impedance is quite close to each other. Consequently, the contrast of the image tends to be low. Another issue is concerning the spatial resolution. For higher resolution, the use of a short wavelength is essential. However, since the attenuation of an ultrasonic signal increases quadratically with the frequency, the reduction in the wavelength compromises the image quality. The present paper addresses these issues and describes various techniques to overcome the problems.","PeriodicalId":37431,"journal":{"name":"Open Neuroimaging Journal","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Overview of Recent Advancement in Ultrasonic Imaging for Biomedical Applications\",\"authors\":\"C. Miyasaka, Sanchiro Yoshida\",\"doi\":\"10.2174/1874440001812010133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the application of acoustic microscopy to the detection of cancerous cells. Acoustic microscopy is a welldeveloped technique but the application to biological tissues is challenging. Acoustic microscopy images abnormality based on the difference in the acoustic impedance from the background. One of the difficulties in the biomedical applications is that since both normal and abnormal cells consist of mostly water, their acoustic impedance is quite close to each other. Consequently, the contrast of the image tends to be low. Another issue is concerning the spatial resolution. For higher resolution, the use of a short wavelength is essential. However, since the attenuation of an ultrasonic signal increases quadratically with the frequency, the reduction in the wavelength compromises the image quality. The present paper addresses these issues and describes various techniques to overcome the problems.\",\"PeriodicalId\":37431,\"journal\":{\"name\":\"Open Neuroimaging Journal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Neuroimaging Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1874440001812010133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Neuroimaging Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874440001812010133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 3

摘要

本文讨论了声学显微镜在癌细胞检测中的应用。声学显微镜是一种发展良好的技术,但在生物组织中的应用具有挑战性。声学显微镜根据声阻抗与背景的差异对异常进行成像。生物医学应用中的困难之一是,由于正常细胞和异常细胞主要由水组成,它们的声阻抗非常接近。因此,图像的对比度往往较低。另一个问题是关于空间分辨率。对于更高的分辨率,使用短波长是必不可少的。然而,由于超声波信号的衰减随频率呈二次方增加,因此波长的减小会损害图像质量。本文解决了这些问题,并描述了克服这些问题的各种技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Overview of Recent Advancement in Ultrasonic Imaging for Biomedical Applications
This paper discusses the application of acoustic microscopy to the detection of cancerous cells. Acoustic microscopy is a welldeveloped technique but the application to biological tissues is challenging. Acoustic microscopy images abnormality based on the difference in the acoustic impedance from the background. One of the difficulties in the biomedical applications is that since both normal and abnormal cells consist of mostly water, their acoustic impedance is quite close to each other. Consequently, the contrast of the image tends to be low. Another issue is concerning the spatial resolution. For higher resolution, the use of a short wavelength is essential. However, since the attenuation of an ultrasonic signal increases quadratically with the frequency, the reduction in the wavelength compromises the image quality. The present paper addresses these issues and describes various techniques to overcome the problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Neuroimaging Journal
Open Neuroimaging Journal Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
0.70
自引率
0.00%
发文量
3
期刊介绍: The Open Neuroimaging Journal is an Open Access online journal, which publishes research articles, reviews/mini-reviews, and letters in all important areas of brain function, structure and organization including neuroimaging, neuroradiology, analysis methods, functional MRI acquisition and physics, brain mapping, macroscopic level of brain organization, computational modeling and analysis, structure-function and brain-behavior relationships, anatomy and physiology, psychiatric diseases and disorders of the nervous system, use of imaging to the understanding of brain pathology and brain abnormalities, cognition and aging, social neuroscience, sensorimotor processing, communication and learning.
期刊最新文献
Correlation of MRI Findings with ODI and VAS Score in Patients with Lower Back Pain Divergences Between Resting State Networks and Meta-Analytic Maps Of Task-Evoked Brain Activity Trends in DNN Model Based Classification and Segmentation of Brain Tumor Detection Analysis of Brain Structure and Neural Organization in Dystrophin-Deficient Model Mice with Magnetic Resonance Imaging at 7 T Unusual Intracranial Manifestation of Infective Endocarditis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1