课程数据深潜:识别学科中的数据素养

Chrissy Klenke, Teresa Auch Schultz, Rayla E. Tokarz, Elena S. Azadbakht
{"title":"课程数据深潜:识别学科中的数据素养","authors":"Chrissy Klenke, Teresa Auch Schultz, Rayla E. Tokarz, Elena S. Azadbakht","doi":"10.7191/jeslib.2020.1169","DOIUrl":null,"url":null,"abstract":"Objective: Evaluate and examine Data Literacy (DL) in the supported disciplines of four liaison librarians at a large research university. Methods: Using a framework developed by Prado and Marzal (2013), the study analyzed 378 syllabi from a two-year period across six departments—Criminal Justice, Geography, Geology, Journalism, Political Science, and Sociology—to see which classes included DLs. Results: The study was able to determine which classes hit on specific DLs and where those classes might need more support in other DLs. The most common DLs being taught in courses are Reading, Interpreting, and Evaluating Data, and Using Data. The least commonly taught are Understanding Data and Managing Data skills. Conclusions: While all disciplines touched on data in some way, there is clear room for librarians to support DLs in the areas of Understanding Data and Managing Data. Correspondence: Chrissy Klenke: cklenke@unr.edu Received: June 29, 2019 Accepted: October 3, 2019 Published: February 3, 2020 Copyright: © 2020 Klenke, Schultz, Tokarz, and Azadbakht. This is an open access article licensed under the terms of the Creative Commons Attribution License. Data Availability: Data associated with this article is shareable upon request. Disclosures: The authors report no conflict of interest. Full-Length Paper Curriculum Data Dive: Identifying Data Literacies in the Disciplines Christina M. Klenke, Teresa Auch Schultz, Rayla E. Tokarz, and Elena Azadbakht University of Nevada, Reno, Reno, NV, USA","PeriodicalId":90214,"journal":{"name":"Journal of escience librarianship","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Curriculum Data Deep Dive: Identifying Data Literacies in the Disciplines\",\"authors\":\"Chrissy Klenke, Teresa Auch Schultz, Rayla E. Tokarz, Elena S. Azadbakht\",\"doi\":\"10.7191/jeslib.2020.1169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective: Evaluate and examine Data Literacy (DL) in the supported disciplines of four liaison librarians at a large research university. Methods: Using a framework developed by Prado and Marzal (2013), the study analyzed 378 syllabi from a two-year period across six departments—Criminal Justice, Geography, Geology, Journalism, Political Science, and Sociology—to see which classes included DLs. Results: The study was able to determine which classes hit on specific DLs and where those classes might need more support in other DLs. The most common DLs being taught in courses are Reading, Interpreting, and Evaluating Data, and Using Data. The least commonly taught are Understanding Data and Managing Data skills. Conclusions: While all disciplines touched on data in some way, there is clear room for librarians to support DLs in the areas of Understanding Data and Managing Data. Correspondence: Chrissy Klenke: cklenke@unr.edu Received: June 29, 2019 Accepted: October 3, 2019 Published: February 3, 2020 Copyright: © 2020 Klenke, Schultz, Tokarz, and Azadbakht. This is an open access article licensed under the terms of the Creative Commons Attribution License. Data Availability: Data associated with this article is shareable upon request. Disclosures: The authors report no conflict of interest. Full-Length Paper Curriculum Data Dive: Identifying Data Literacies in the Disciplines Christina M. Klenke, Teresa Auch Schultz, Rayla E. Tokarz, and Elena Azadbakht University of Nevada, Reno, Reno, NV, USA\",\"PeriodicalId\":90214,\"journal\":{\"name\":\"Journal of escience librarianship\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of escience librarianship\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7191/jeslib.2020.1169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of escience librarianship","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7191/jeslib.2020.1169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

目的:评价和考察某大型研究型大学四名联络员的数据素养(DL)。方法:使用Prado和Marzal(2013)开发的框架,该研究分析了六个系(刑事司法、地理、地质、新闻、政治科学和社会学)为期两年的378个教学大纲,以查看哪些课程包含DLs。结果:该研究能够确定哪些类符合特定的dl,以及这些类在其他dl中可能需要更多支持的地方。课程中教授的最常见的dl是阅读、解释和评估数据以及使用数据。最不常教的是理解数据和管理数据技能。结论:虽然所有学科都以某种方式涉及数据,但在理解数据和管理数据方面,图书馆员仍有明显的空间来支持dl。通讯:Chrissy Klenke: cklenke@unr.edu收稿日期:2019年6月29日收稿日期:2019年10月3日发布日期:2020年2月3日版权:©2020 Klenke, Schultz, Tokarz, and Azadbakht。这是一篇基于知识共享署名许可的开放获取文章。数据可用性:与本文相关的数据可应请求共享。披露:作者报告无利益冲突。全文论文课程数据潜水:识别学科中的数据素养Christina M. Klenke, Teresa Auch Schultz, Rayla E. Tokarz和Elena Azadbakht内华达大学,里诺,里诺,内华达州,美国
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Curriculum Data Deep Dive: Identifying Data Literacies in the Disciplines
Objective: Evaluate and examine Data Literacy (DL) in the supported disciplines of four liaison librarians at a large research university. Methods: Using a framework developed by Prado and Marzal (2013), the study analyzed 378 syllabi from a two-year period across six departments—Criminal Justice, Geography, Geology, Journalism, Political Science, and Sociology—to see which classes included DLs. Results: The study was able to determine which classes hit on specific DLs and where those classes might need more support in other DLs. The most common DLs being taught in courses are Reading, Interpreting, and Evaluating Data, and Using Data. The least commonly taught are Understanding Data and Managing Data skills. Conclusions: While all disciplines touched on data in some way, there is clear room for librarians to support DLs in the areas of Understanding Data and Managing Data. Correspondence: Chrissy Klenke: cklenke@unr.edu Received: June 29, 2019 Accepted: October 3, 2019 Published: February 3, 2020 Copyright: © 2020 Klenke, Schultz, Tokarz, and Azadbakht. This is an open access article licensed under the terms of the Creative Commons Attribution License. Data Availability: Data associated with this article is shareable upon request. Disclosures: The authors report no conflict of interest. Full-Length Paper Curriculum Data Dive: Identifying Data Literacies in the Disciplines Christina M. Klenke, Teresa Auch Schultz, Rayla E. Tokarz, and Elena Azadbakht University of Nevada, Reno, Reno, NV, USA
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
16 weeks
期刊最新文献
Ethical considerations in utilizing artificial intelligence for analyzing the NHGRI's History of Genomics and Human Genome Project archives. The Creative Urge Title Pending 740 A Problem Shared Is a Community Created: Recommendations for Cross-Institutional Collaborations. Train the Teacher: Practical guidance for effective, critical teaching approaches for science and data librarians
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1