Camille Magneville, Marie‐Lou Leréec Le Bricquir, T. Dailianis, Grigorios Skouradakis, T. Claverie, S. Villéger
{"title":"长时间的远程水下视频显示,鱼类的放牧随时间变化很大,并由非本地物种主导","authors":"Camille Magneville, Marie‐Lou Leréec Le Bricquir, T. Dailianis, Grigorios Skouradakis, T. Claverie, S. Villéger","doi":"10.1002/rse2.311","DOIUrl":null,"url":null,"abstract":"In the marine environment, fish contribute to key ecological processes such as controlling food‐webs through top‐down impacts, especially on algae. To date, the assessment of fish grazing activity has mostly been performed using short‐term (<1 h) censuses by divers or remote cameras which do not allow estimating the variability of grazing rate within and between days. However, understanding the temporal variation of fish activity and hence contribution of species to ecosystem functioning is of particular interest in the context of biological invasion. Here, using long‐duration remote underwater cameras, we recorded fish abundance and grazing events over three consecutive days in October 2019 in a shallow Mediterranean ecosystem from northern Crete. This novel approach allowed us to assess temporal variation of abundance and grazing activity of the two native (Sarpa salpa and Sparisoma cretense) and the two non‐indigenous fish species (Siganus rivulatus and Siganus luridus). Non‐indigenous Siganus rivulatus was the most common species in the studied coastal habitat, followed by the two native species while the non‐indigenous Siganus luridus was scarce. Overall, the non‐indigenous S. rivulatus and the native S. salpa are responsible for more than 90% of the recorded grazing activity with similar bite rates between the two species. More than 70% of the grazing activity arose in grazing pulses in the afternoon, supporting the diel feeding hypothesis according to which feeding is greater in the afternoon when nutritive quality of macrophytes is the highest. In addition, some of the highest peaks in grazing activity were driven by a few individuals. Hence, surveys of only abundance could not provide accurate estimates of herbivory. Last, Siganus rivulatus presence did not significantly affect grazing activity of the native Sarpa salpa. Our results demonstrate that long‐duration remote underwater videos are a useful tool to accurately assess the contribution of fishes to ecosystem functioning.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Long‐duration remote underwater videos reveal that grazing by fishes is highly variable through time and dominated by non‐indigenous species\",\"authors\":\"Camille Magneville, Marie‐Lou Leréec Le Bricquir, T. Dailianis, Grigorios Skouradakis, T. Claverie, S. Villéger\",\"doi\":\"10.1002/rse2.311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the marine environment, fish contribute to key ecological processes such as controlling food‐webs through top‐down impacts, especially on algae. To date, the assessment of fish grazing activity has mostly been performed using short‐term (<1 h) censuses by divers or remote cameras which do not allow estimating the variability of grazing rate within and between days. However, understanding the temporal variation of fish activity and hence contribution of species to ecosystem functioning is of particular interest in the context of biological invasion. Here, using long‐duration remote underwater cameras, we recorded fish abundance and grazing events over three consecutive days in October 2019 in a shallow Mediterranean ecosystem from northern Crete. This novel approach allowed us to assess temporal variation of abundance and grazing activity of the two native (Sarpa salpa and Sparisoma cretense) and the two non‐indigenous fish species (Siganus rivulatus and Siganus luridus). Non‐indigenous Siganus rivulatus was the most common species in the studied coastal habitat, followed by the two native species while the non‐indigenous Siganus luridus was scarce. Overall, the non‐indigenous S. rivulatus and the native S. salpa are responsible for more than 90% of the recorded grazing activity with similar bite rates between the two species. More than 70% of the grazing activity arose in grazing pulses in the afternoon, supporting the diel feeding hypothesis according to which feeding is greater in the afternoon when nutritive quality of macrophytes is the highest. In addition, some of the highest peaks in grazing activity were driven by a few individuals. Hence, surveys of only abundance could not provide accurate estimates of herbivory. Last, Siganus rivulatus presence did not significantly affect grazing activity of the native Sarpa salpa. Our results demonstrate that long‐duration remote underwater videos are a useful tool to accurately assess the contribution of fishes to ecosystem functioning.\",\"PeriodicalId\":21132,\"journal\":{\"name\":\"Remote Sensing in Ecology and Conservation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2022-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing in Ecology and Conservation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/rse2.311\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing in Ecology and Conservation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/rse2.311","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Long‐duration remote underwater videos reveal that grazing by fishes is highly variable through time and dominated by non‐indigenous species
In the marine environment, fish contribute to key ecological processes such as controlling food‐webs through top‐down impacts, especially on algae. To date, the assessment of fish grazing activity has mostly been performed using short‐term (<1 h) censuses by divers or remote cameras which do not allow estimating the variability of grazing rate within and between days. However, understanding the temporal variation of fish activity and hence contribution of species to ecosystem functioning is of particular interest in the context of biological invasion. Here, using long‐duration remote underwater cameras, we recorded fish abundance and grazing events over three consecutive days in October 2019 in a shallow Mediterranean ecosystem from northern Crete. This novel approach allowed us to assess temporal variation of abundance and grazing activity of the two native (Sarpa salpa and Sparisoma cretense) and the two non‐indigenous fish species (Siganus rivulatus and Siganus luridus). Non‐indigenous Siganus rivulatus was the most common species in the studied coastal habitat, followed by the two native species while the non‐indigenous Siganus luridus was scarce. Overall, the non‐indigenous S. rivulatus and the native S. salpa are responsible for more than 90% of the recorded grazing activity with similar bite rates between the two species. More than 70% of the grazing activity arose in grazing pulses in the afternoon, supporting the diel feeding hypothesis according to which feeding is greater in the afternoon when nutritive quality of macrophytes is the highest. In addition, some of the highest peaks in grazing activity were driven by a few individuals. Hence, surveys of only abundance could not provide accurate estimates of herbivory. Last, Siganus rivulatus presence did not significantly affect grazing activity of the native Sarpa salpa. Our results demonstrate that long‐duration remote underwater videos are a useful tool to accurately assess the contribution of fishes to ecosystem functioning.
期刊介绍:
emote Sensing in Ecology and Conservation provides a forum for rapid, peer-reviewed publication of novel, multidisciplinary research at the interface between remote sensing science and ecology and conservation. The journal prioritizes findings that advance the scientific basis of ecology and conservation, promoting the development of remote-sensing based methods relevant to the management of land use and biological systems at all levels, from populations and species to ecosystems and biomes. The journal defines remote sensing in its broadest sense, including data acquisition by hand-held and fixed ground-based sensors, such as camera traps and acoustic recorders, and sensors on airplanes and satellites. The intended journal’s audience includes ecologists, conservation scientists, policy makers, managers of terrestrial and aquatic systems, remote sensing scientists, and students.
Remote Sensing in Ecology and Conservation is a fully open access journal from Wiley and the Zoological Society of London. Remote sensing has enormous potential as to provide information on the state of, and pressures on, biological diversity and ecosystem services, at multiple spatial and temporal scales. This new publication provides a forum for multidisciplinary research in remote sensing science, ecological research and conservation science.