基于测试集的测试中单模型与多维模型的比较

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2017-11-24 DOI:10.1027/1614-2241/a000137
Alejandro Hernández‐Camacho, J. Olea, F. J. Abad
{"title":"基于测试集的测试中单模型与多维模型的比较","authors":"Alejandro Hernández‐Camacho, J. Olea, F. J. Abad","doi":"10.1027/1614-2241/a000137","DOIUrl":null,"url":null,"abstract":"The bifactor model (BM) and the testlet response model (TRM) are the most common multidimensional models applied to testlet-based tests. The common procedure is to estimate these models using different estimation methods (see, e.g., DeMars, 2006). A possible consequence of this is that previous findings about the implications of fitting a wrong model to the data may be confounded with the estimation procedures they employed. With this in mind, the present study uses the same method (maximum marginal likelihood [MML] using dimensional reduction) to compare uni- and multidimensional strategies to testlet-based tests, and assess the performance of various relative fit indices. Data were simulated under three different models, namely BM, TRM, and the unidimensional model. Recovery of item parameters, reliability estimates, and selection rates of the relative fit indices were documented. The results were essentially consistent with those obtained through different methods (DeMars, 2006), indicating that the effect of the estimation method is negligible. Regarding the fit indices, Akaike Information Criterion (AIC) showed the best selection rates, whereas Bayes Information Criterion (BIC) tended to select a model which is simpler than the true one. The work concludes with recommendations for practitioners and proposals for future research.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2017-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Comparison of Uni- and Multidimensional Models Applied in Testlet-Based Tests\",\"authors\":\"Alejandro Hernández‐Camacho, J. Olea, F. J. Abad\",\"doi\":\"10.1027/1614-2241/a000137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The bifactor model (BM) and the testlet response model (TRM) are the most common multidimensional models applied to testlet-based tests. The common procedure is to estimate these models using different estimation methods (see, e.g., DeMars, 2006). A possible consequence of this is that previous findings about the implications of fitting a wrong model to the data may be confounded with the estimation procedures they employed. With this in mind, the present study uses the same method (maximum marginal likelihood [MML] using dimensional reduction) to compare uni- and multidimensional strategies to testlet-based tests, and assess the performance of various relative fit indices. Data were simulated under three different models, namely BM, TRM, and the unidimensional model. Recovery of item parameters, reliability estimates, and selection rates of the relative fit indices were documented. The results were essentially consistent with those obtained through different methods (DeMars, 2006), indicating that the effect of the estimation method is negligible. Regarding the fit indices, Akaike Information Criterion (AIC) showed the best selection rates, whereas Bayes Information Criterion (BIC) tended to select a model which is simpler than the true one. The work concludes with recommendations for practitioners and proposals for future research.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2017-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1027/1614-2241/a000137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1027/1614-2241/a000137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 4

摘要

双因子模型(BM)和小测试响应模型(TRM)是应用于基于小测试的最常见的多维模型。常见的程序是使用不同的估计方法来估计这些模型(例如,见DeMars,2006)。这样做的一个可能后果是,以前关于将错误模型拟合到数据中的影响的发现可能与他们使用的估计程序相混淆。考虑到这一点,本研究使用相同的方法(使用降维的最大边际似然[MML])将单一和多维策略与基于测试集的测试进行比较,并评估各种相对拟合指数的性能。数据在三个不同的模型下进行了模拟,即BM、TRM和一维模型。记录了项目参数的恢复、可靠性估计和相对拟合指数的选择率。结果与通过不同方法获得的结果基本一致(DeMars,2006),表明估计方法的影响可以忽略不计。关于拟合指数,Akaike信息准则(AIC)显示出最佳的选择率,而Bayes信息准则(BIC)倾向于选择比真实模型更简单的模型。这项工作最后提出了对从业者的建议和对未来研究的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of Uni- and Multidimensional Models Applied in Testlet-Based Tests
The bifactor model (BM) and the testlet response model (TRM) are the most common multidimensional models applied to testlet-based tests. The common procedure is to estimate these models using different estimation methods (see, e.g., DeMars, 2006). A possible consequence of this is that previous findings about the implications of fitting a wrong model to the data may be confounded with the estimation procedures they employed. With this in mind, the present study uses the same method (maximum marginal likelihood [MML] using dimensional reduction) to compare uni- and multidimensional strategies to testlet-based tests, and assess the performance of various relative fit indices. Data were simulated under three different models, namely BM, TRM, and the unidimensional model. Recovery of item parameters, reliability estimates, and selection rates of the relative fit indices were documented. The results were essentially consistent with those obtained through different methods (DeMars, 2006), indicating that the effect of the estimation method is negligible. Regarding the fit indices, Akaike Information Criterion (AIC) showed the best selection rates, whereas Bayes Information Criterion (BIC) tended to select a model which is simpler than the true one. The work concludes with recommendations for practitioners and proposals for future research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1