滚动运动过程中的运动疾病:VR HMD视图与监视器视图

IF 1.9 Q3 ENGINEERING, MECHANICAL Vibration Pub Date : 2023-01-06 DOI:10.3390/vibration6010004
Yahya Sumayli, Y. Ye
{"title":"滚动运动过程中的运动疾病:VR HMD视图与监视器视图","authors":"Yahya Sumayli, Y. Ye","doi":"10.3390/vibration6010004","DOIUrl":null,"url":null,"abstract":"The purpose of this study was to investigate the effect of two views on motion sickness caused by low-frequency roll motion in the laboratory. Fifteen healthy male subjects participated in the study and were exposed to 30 min of 0.25 Hz roll oscillation at an angle of rotation (±5°). Subjects sat on a rigid seat with one of two visual scenes each session: (i) viewing 360° videos through virtual reality (VR) head-mounted display (HMD) device and (ii) reading articles on a monitor in a closed cabin. Ratings of motion sickness were obtained at 1 min intervals. The mean illness ratings of subjects for all visual conditions increased over the 30 min exposure to motion. There was significantly less sickness in the HMD condition than in the monitor condition. The findings suggest a beneficial effect of the HMD view on the severity of sickness. However, the HMD view had no effect on the sickness experienced by those vulnerable to sickness caused by exposure to motion or use of VR. It was concluded that the visual activity had a significant influence on motion sickness induced by 0.25 Hz roll oscillation with an angle of rotation (±5°), and the applications of VR could be implemented to further reduce motion sickness.","PeriodicalId":75301,"journal":{"name":"Vibration","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Motion Sickness during Roll Motion: VR HMD View versus Monitor View\",\"authors\":\"Yahya Sumayli, Y. Ye\",\"doi\":\"10.3390/vibration6010004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this study was to investigate the effect of two views on motion sickness caused by low-frequency roll motion in the laboratory. Fifteen healthy male subjects participated in the study and were exposed to 30 min of 0.25 Hz roll oscillation at an angle of rotation (±5°). Subjects sat on a rigid seat with one of two visual scenes each session: (i) viewing 360° videos through virtual reality (VR) head-mounted display (HMD) device and (ii) reading articles on a monitor in a closed cabin. Ratings of motion sickness were obtained at 1 min intervals. The mean illness ratings of subjects for all visual conditions increased over the 30 min exposure to motion. There was significantly less sickness in the HMD condition than in the monitor condition. The findings suggest a beneficial effect of the HMD view on the severity of sickness. However, the HMD view had no effect on the sickness experienced by those vulnerable to sickness caused by exposure to motion or use of VR. It was concluded that the visual activity had a significant influence on motion sickness induced by 0.25 Hz roll oscillation with an angle of rotation (±5°), and the applications of VR could be implemented to further reduce motion sickness.\",\"PeriodicalId\":75301,\"journal\":{\"name\":\"Vibration\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vibration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/vibration6010004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/vibration6010004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 2

摘要

本研究的目的是在实验室中探讨两种视角对低频翻滚运动引起的晕动病的影响。15名健康男性受试者以0.25 Hz的旋转角度(±5°)进行翻滚振荡30分钟。受试者坐在刚性座椅上,每次都有两个视觉场景之一:(i)通过虚拟现实(VR)头戴式显示器(HMD)设备观看360°视频;(ii)在封闭舱内的显示器上阅读文章。每隔1分钟获得晕动病评分。在所有视觉条件下,受试者的平均疾病评分在30分钟的运动暴露中增加。HMD组的疾病发生率明显低于监测组。研究结果表明,HMD观点对疾病的严重程度有有益的影响。然而,HMD视图对那些易受运动或使用VR引起的疾病影响的人所经历的疾病没有影响。结果表明,视觉活动对0.25 Hz(±5°)侧摇诱发的晕动病有显著影响,可以应用VR技术进一步减轻晕动病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Motion Sickness during Roll Motion: VR HMD View versus Monitor View
The purpose of this study was to investigate the effect of two views on motion sickness caused by low-frequency roll motion in the laboratory. Fifteen healthy male subjects participated in the study and were exposed to 30 min of 0.25 Hz roll oscillation at an angle of rotation (±5°). Subjects sat on a rigid seat with one of two visual scenes each session: (i) viewing 360° videos through virtual reality (VR) head-mounted display (HMD) device and (ii) reading articles on a monitor in a closed cabin. Ratings of motion sickness were obtained at 1 min intervals. The mean illness ratings of subjects for all visual conditions increased over the 30 min exposure to motion. There was significantly less sickness in the HMD condition than in the monitor condition. The findings suggest a beneficial effect of the HMD view on the severity of sickness. However, the HMD view had no effect on the sickness experienced by those vulnerable to sickness caused by exposure to motion or use of VR. It was concluded that the visual activity had a significant influence on motion sickness induced by 0.25 Hz roll oscillation with an angle of rotation (±5°), and the applications of VR could be implemented to further reduce motion sickness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
A Study of Seating Suspension System Vibration Isolation Using a Hybrid Method of an Artificial Neural Network and Response Surface Modelling Evaluating Contact-Less Sensing and Fault Diagnosis Characteristics in Vibrating Thin Cantilever Beams with a MetGlas® 2826MB Ribbon A Testbench for Measuring the Dynamic Force-Displacement Characteristics of Shockmounts Study on Fluid–Structure Interaction of a Camber Morphing Wing Study on Lateral Vibration of Tail Coach for High-Speed Train under Unsteady Aerodynamic Loads
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1