Jessica A. Thompson Jobe, R. Briggs, R. Gold, S. DeLong, Madeline Hille, J. Delano, S. Johnstone, A. Pickering, Rachel Phillips, A. Calvert
{"title":"彭多萨断裂带:美国加州东北部的一个分布的右-正-斜断层系统","authors":"Jessica A. Thompson Jobe, R. Briggs, R. Gold, S. DeLong, Madeline Hille, J. Delano, S. Johnstone, A. Pickering, Rachel Phillips, A. Calvert","doi":"10.1130/ges02450.1","DOIUrl":null,"url":null,"abstract":"The tectonic domains of Basin and Range extension, Cascadia subduction zone contraction, and Walker Lane dextral transtension converge in the Mushroom Rock region of northeastern California, USA. We combined analysis of high-resolution topographic data, bedrock mapping, 40Ar/39Ar geochronology, low-temperature thermochronology, and existing geologic and fault mapping to characterize an extensive dextral-normal-oblique fault system called the Pondosa fault zone. This fault zone extends north-northwest from the Pit River east of Soldier Mountain, California, into moderately high-relief volcanic topography as far north as the Bartle (California) townsite with normal and dextral offset apparent in geomorphology and fault exposures. New and existing 40Ar/39Ar and radiocarbon dating of offset lava flows provides ages of 12.4 ka to 9.6 Ma for late Cenozoic stratigraphic units. Scarp morphology and geomorphic expression indicate that the fault system was active in the late Pleistocene. The Pondosa fault zone may represent a dextral-oblique accommodation zone between north-south–oriented Basin and Range extensional fault systems and/or part of the Sierra Nevada–Oregon Coast block microplate boundary.","PeriodicalId":55100,"journal":{"name":"Geosphere","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Pondosa fault zone: A distributed dextral-normal-oblique fault system in northeastern California, USA\",\"authors\":\"Jessica A. Thompson Jobe, R. Briggs, R. Gold, S. DeLong, Madeline Hille, J. Delano, S. Johnstone, A. Pickering, Rachel Phillips, A. Calvert\",\"doi\":\"10.1130/ges02450.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The tectonic domains of Basin and Range extension, Cascadia subduction zone contraction, and Walker Lane dextral transtension converge in the Mushroom Rock region of northeastern California, USA. We combined analysis of high-resolution topographic data, bedrock mapping, 40Ar/39Ar geochronology, low-temperature thermochronology, and existing geologic and fault mapping to characterize an extensive dextral-normal-oblique fault system called the Pondosa fault zone. This fault zone extends north-northwest from the Pit River east of Soldier Mountain, California, into moderately high-relief volcanic topography as far north as the Bartle (California) townsite with normal and dextral offset apparent in geomorphology and fault exposures. New and existing 40Ar/39Ar and radiocarbon dating of offset lava flows provides ages of 12.4 ka to 9.6 Ma for late Cenozoic stratigraphic units. Scarp morphology and geomorphic expression indicate that the fault system was active in the late Pleistocene. The Pondosa fault zone may represent a dextral-oblique accommodation zone between north-south–oriented Basin and Range extensional fault systems and/or part of the Sierra Nevada–Oregon Coast block microplate boundary.\",\"PeriodicalId\":55100,\"journal\":{\"name\":\"Geosphere\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geosphere\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1130/ges02450.1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1130/ges02450.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
The Pondosa fault zone: A distributed dextral-normal-oblique fault system in northeastern California, USA
The tectonic domains of Basin and Range extension, Cascadia subduction zone contraction, and Walker Lane dextral transtension converge in the Mushroom Rock region of northeastern California, USA. We combined analysis of high-resolution topographic data, bedrock mapping, 40Ar/39Ar geochronology, low-temperature thermochronology, and existing geologic and fault mapping to characterize an extensive dextral-normal-oblique fault system called the Pondosa fault zone. This fault zone extends north-northwest from the Pit River east of Soldier Mountain, California, into moderately high-relief volcanic topography as far north as the Bartle (California) townsite with normal and dextral offset apparent in geomorphology and fault exposures. New and existing 40Ar/39Ar and radiocarbon dating of offset lava flows provides ages of 12.4 ka to 9.6 Ma for late Cenozoic stratigraphic units. Scarp morphology and geomorphic expression indicate that the fault system was active in the late Pleistocene. The Pondosa fault zone may represent a dextral-oblique accommodation zone between north-south–oriented Basin and Range extensional fault systems and/or part of the Sierra Nevada–Oregon Coast block microplate boundary.
期刊介绍:
Geosphere is GSA''s ambitious, online-only publication that addresses the growing need for timely publication of research results, data, software, and educational developments in ways that cannot be addressed by traditional formats. The journal''s rigorously peer-reviewed, high-quality research papers target an international audience in all geoscience fields. Its innovative format encourages extensive use of color, animations, interactivity, and oversize figures (maps, cross sections, etc.), and provides easy access to resources such as GIS databases, data archives, and modeling results. Geosphere''s broad scope and variety of contributions is a refreshing addition to traditional journals.