配电网络分析民主化

IF 2.4 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE DataCentric Engineering Pub Date : 2023-01-10 DOI:10.1017/dce.2022.41
M. Neaimeh, M. Deakin, Ryan Jenkinson, Oscar Giles
{"title":"配电网络分析民主化","authors":"M. Neaimeh, M. Deakin, Ryan Jenkinson, Oscar Giles","doi":"10.1017/dce.2022.41","DOIUrl":null,"url":null,"abstract":"Abstract The uptake of electric vehicles (EVs) and renewable energy technologies is changing the magnitude, variability, and direction of power flows in electricity networks. To ensure a successful transition to a net zero energy system, it will be necessary for a wide range of stakeholders to understand the impacts of these changing flows on networks. However, there is a gap between those with the data and capabilities to understand electricity networks, such as network operators, and those working on adjacent parts of the energy transition jigsaw, such as electricity suppliers and EV charging infrastructure operators. This paper describes the electric vehicle network analysis tool (EVENT), developed to help make network analysis accessible to a wider range of stakeholders in the energy ecosystem who might not have the bandwidth to curate and integrate disparate datasets and carry out electricity network simulations. EVENT analyses the potential impacts of low-carbon technologies on congestion in electricity networks, helping to inform the design of products and services. To demonstrate EVENT’s potential, we use an extensive smart meter dataset provided by an energy supplier to assess the impacts of electricity smart tariffs on networks. Results suggest both network operators and energy suppliers will have to work much more closely together to ensure that the flexibility of customers to support the energy system can be maximized, while respecting safety and security constraints within networks. EVENT’s modular and open-source approach enables integration of new methods and data, future-proofing the tool for long-term impact.","PeriodicalId":34169,"journal":{"name":"DataCentric Engineering","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Democratizing electricity distribution network analysis\",\"authors\":\"M. Neaimeh, M. Deakin, Ryan Jenkinson, Oscar Giles\",\"doi\":\"10.1017/dce.2022.41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The uptake of electric vehicles (EVs) and renewable energy technologies is changing the magnitude, variability, and direction of power flows in electricity networks. To ensure a successful transition to a net zero energy system, it will be necessary for a wide range of stakeholders to understand the impacts of these changing flows on networks. However, there is a gap between those with the data and capabilities to understand electricity networks, such as network operators, and those working on adjacent parts of the energy transition jigsaw, such as electricity suppliers and EV charging infrastructure operators. This paper describes the electric vehicle network analysis tool (EVENT), developed to help make network analysis accessible to a wider range of stakeholders in the energy ecosystem who might not have the bandwidth to curate and integrate disparate datasets and carry out electricity network simulations. EVENT analyses the potential impacts of low-carbon technologies on congestion in electricity networks, helping to inform the design of products and services. To demonstrate EVENT’s potential, we use an extensive smart meter dataset provided by an energy supplier to assess the impacts of electricity smart tariffs on networks. Results suggest both network operators and energy suppliers will have to work much more closely together to ensure that the flexibility of customers to support the energy system can be maximized, while respecting safety and security constraints within networks. EVENT’s modular and open-source approach enables integration of new methods and data, future-proofing the tool for long-term impact.\",\"PeriodicalId\":34169,\"journal\":{\"name\":\"DataCentric Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DataCentric Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/dce.2022.41\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DataCentric Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/dce.2022.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

摘要

摘要电动汽车(EV)和可再生能源技术的普及正在改变电网中电力流动的规模、可变性和方向。为了确保成功过渡到净零能源系统,广泛的利益相关者有必要了解这些不断变化的流量对网络的影响。然而,那些有数据和能力了解电力网络的人,如网络运营商,与那些在能源转型拼图的相邻部分工作的人,例如电力供应商和电动汽车充电基础设施运营商之间存在差距。本文描述了电动汽车网络分析工具(EVENT),该工具旨在帮助能源生态系统中更广泛的利益相关者进行网络分析,这些利益相关者可能没有带宽来策划和集成不同的数据集并进行电网模拟。EVENT分析了低碳技术对电网拥堵的潜在影响,有助于为产品和服务的设计提供信息。为了展示EVENT的潜力,我们使用能源供应商提供的广泛的智能电表数据集来评估电力智能电价对网络的影响。结果表明,网络运营商和能源供应商必须更加紧密地合作,以确保客户支持能源系统的灵活性最大化,同时尊重网络内的安全和安保约束。EVENT的模块化和开源方法实现了新方法和数据的集成,为工具的长期影响提供了经得起未来考验的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Democratizing electricity distribution network analysis
Abstract The uptake of electric vehicles (EVs) and renewable energy technologies is changing the magnitude, variability, and direction of power flows in electricity networks. To ensure a successful transition to a net zero energy system, it will be necessary for a wide range of stakeholders to understand the impacts of these changing flows on networks. However, there is a gap between those with the data and capabilities to understand electricity networks, such as network operators, and those working on adjacent parts of the energy transition jigsaw, such as electricity suppliers and EV charging infrastructure operators. This paper describes the electric vehicle network analysis tool (EVENT), developed to help make network analysis accessible to a wider range of stakeholders in the energy ecosystem who might not have the bandwidth to curate and integrate disparate datasets and carry out electricity network simulations. EVENT analyses the potential impacts of low-carbon technologies on congestion in electricity networks, helping to inform the design of products and services. To demonstrate EVENT’s potential, we use an extensive smart meter dataset provided by an energy supplier to assess the impacts of electricity smart tariffs on networks. Results suggest both network operators and energy suppliers will have to work much more closely together to ensure that the flexibility of customers to support the energy system can be maximized, while respecting safety and security constraints within networks. EVENT’s modular and open-source approach enables integration of new methods and data, future-proofing the tool for long-term impact.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
DataCentric Engineering
DataCentric Engineering Engineering-General Engineering
CiteScore
5.60
自引率
0.00%
发文量
26
审稿时长
12 weeks
期刊最新文献
Semantic 3D city interfaces—Intelligent interactions on dynamic geospatial knowledge graphs Optical network physical layer parameter optimization for digital backpropagation using Gaussian processes Finite element model updating with quantified uncertainties using point cloud data Evaluating probabilistic forecasts for maritime engineering operations Bottom-up forecasting: Applications and limitations in load forecasting using smart-meter data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1