{"title":"低温表面处理提高Co-Cr-Mo髋关节植入物的耐磨性以改善其功能性能:一个案例研究","authors":"S. Yang, O. Dillon, D. Puleo, I. S. Jawahir","doi":"10.1080/10910344.2021.1903924","DOIUrl":null,"url":null,"abstract":"Abstract This study was to determine to what extent a cryogenic surface treatment technique could improve the wear resistance of a Co-Cr-Mo hip implant material. Dry and cryogenic treatments were used to create different surface and sub-surface conditions. The Co-Cr-Mo samples were wear-tested using a pin-on-disk tester in a simulated implant environment. A change in the wear response was found as a function of the material surface properties. Correlation between the treatment conditions and wear volume loss was discussed. Sample from cryogenic treatment was found to be most promising with lower wear volume due to microstructure refinement, compressive residual stresses and preferred hcp phase; moreover, the preferred hcp phase revealed to be the most influencing property in enhancing the wear resistance.","PeriodicalId":51109,"journal":{"name":"Machining Science and Technology","volume":"25 1","pages":"455 - 476"},"PeriodicalIF":2.7000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10910344.2021.1903924","citationCount":"3","resultStr":"{\"title\":\"Enhancement of wear resistance for improved functional performance of Co-Cr-Mo hip implants through cryogenic surface treatment: a case study\",\"authors\":\"S. Yang, O. Dillon, D. Puleo, I. S. Jawahir\",\"doi\":\"10.1080/10910344.2021.1903924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This study was to determine to what extent a cryogenic surface treatment technique could improve the wear resistance of a Co-Cr-Mo hip implant material. Dry and cryogenic treatments were used to create different surface and sub-surface conditions. The Co-Cr-Mo samples were wear-tested using a pin-on-disk tester in a simulated implant environment. A change in the wear response was found as a function of the material surface properties. Correlation between the treatment conditions and wear volume loss was discussed. Sample from cryogenic treatment was found to be most promising with lower wear volume due to microstructure refinement, compressive residual stresses and preferred hcp phase; moreover, the preferred hcp phase revealed to be the most influencing property in enhancing the wear resistance.\",\"PeriodicalId\":51109,\"journal\":{\"name\":\"Machining Science and Technology\",\"volume\":\"25 1\",\"pages\":\"455 - 476\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/10910344.2021.1903924\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machining Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10910344.2021.1903924\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10910344.2021.1903924","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Enhancement of wear resistance for improved functional performance of Co-Cr-Mo hip implants through cryogenic surface treatment: a case study
Abstract This study was to determine to what extent a cryogenic surface treatment technique could improve the wear resistance of a Co-Cr-Mo hip implant material. Dry and cryogenic treatments were used to create different surface and sub-surface conditions. The Co-Cr-Mo samples were wear-tested using a pin-on-disk tester in a simulated implant environment. A change in the wear response was found as a function of the material surface properties. Correlation between the treatment conditions and wear volume loss was discussed. Sample from cryogenic treatment was found to be most promising with lower wear volume due to microstructure refinement, compressive residual stresses and preferred hcp phase; moreover, the preferred hcp phase revealed to be the most influencing property in enhancing the wear resistance.
期刊介绍:
Machining Science and Technology publishes original scientific and technical papers and review articles on topics related to traditional and nontraditional machining processes performed on all materials—metals and advanced alloys, polymers, ceramics, composites, and biomaterials.
Topics covered include:
-machining performance of all materials, including lightweight materials-
coated and special cutting tools: design and machining performance evaluation-
predictive models for machining performance and optimization, including machining dynamics-
measurement and analysis of machined surfaces-
sustainable machining: dry, near-dry, or Minimum Quantity Lubrication (MQL) and cryogenic machining processes
precision and micro/nano machining-
design and implementation of in-process sensors for monitoring and control of machining performance-
surface integrity in machining processes, including detection and characterization of machining damage-
new and advanced abrasive machining processes: design and performance analysis-
cutting fluids and special coolants/lubricants-
nontraditional and hybrid machining processes, including EDM, ECM, laser and plasma-assisted machining, waterjet and abrasive waterjet machining