Meng Zhu, Xiaorong Guan, Zhong Li, YunLong Gao, K. Zou, Xin’an Gao, Zheng Wang, Huibin Li, Keshu Cai
{"title":"基于独立分量分析与支持向量回归相结合的表面肌电图膝关节运动轨迹预测","authors":"Meng Zhu, Xiaorong Guan, Zhong Li, YunLong Gao, K. Zou, Xin’an Gao, Zheng Wang, Huibin Li, Keshu Cai","doi":"10.1177/17298806221119668","DOIUrl":null,"url":null,"abstract":"In recent years, surface electromyogram signals have been increasingly used to operate wearable devices. These devices can aid to help workers or soldiers to lower the load in the task to boost efficiency. However, achieving effective signal prediction has always been a challenge. It is critical to use an appropriate signal preprocessing method and prediction algorithm when developing a controller that can accurately predict and control human movements in real time. For this purpose, this article investigates the effect of various surface electromyogram preprocessing methods and algorithms on prediction results. Walking data (surface electromyogram angle) were collected from 10 adults (5 males and 5 females). To investigate the effect of preprocessing methods on the experimental results, the raw surface electromyogram signals were grouped and subjected to different preprocessing (bandpass/principal component analysis/independent component analysis, respectively). The processed data were then imported into the random forest and support vector regression algorithm for training and prediction. Multiple scenarios were combined to compare the results. The independent component analysis-processed data had the best performance in terms of convergence time and prediction accuracy in the support vector regression algorithm. The prediction accuracy of knee motion with this scheme was 94.54% ± 2.98. Notably, the forecast time was halved in comparison to the other combinations. The independent component analysis algorithm’s “blind source separation” feature effectively separates the original surface electromyogram signal and reduces signal noise, hence increasing prediction efficiency. The main contribution of this work is that the method (independent component analysis + support vector regression) has the potency of best prediction of surface electromyogram signal for knee movement. This work is the first step toward myoelectric control of assisted exoskeleton robots through discrete decoding.","PeriodicalId":50343,"journal":{"name":"International Journal of Advanced Robotic Systems","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Prediction of knee trajectory based on surface electromyogram with independent component analysis combined with support vector regression\",\"authors\":\"Meng Zhu, Xiaorong Guan, Zhong Li, YunLong Gao, K. Zou, Xin’an Gao, Zheng Wang, Huibin Li, Keshu Cai\",\"doi\":\"10.1177/17298806221119668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, surface electromyogram signals have been increasingly used to operate wearable devices. These devices can aid to help workers or soldiers to lower the load in the task to boost efficiency. However, achieving effective signal prediction has always been a challenge. It is critical to use an appropriate signal preprocessing method and prediction algorithm when developing a controller that can accurately predict and control human movements in real time. For this purpose, this article investigates the effect of various surface electromyogram preprocessing methods and algorithms on prediction results. Walking data (surface electromyogram angle) were collected from 10 adults (5 males and 5 females). To investigate the effect of preprocessing methods on the experimental results, the raw surface electromyogram signals were grouped and subjected to different preprocessing (bandpass/principal component analysis/independent component analysis, respectively). The processed data were then imported into the random forest and support vector regression algorithm for training and prediction. Multiple scenarios were combined to compare the results. The independent component analysis-processed data had the best performance in terms of convergence time and prediction accuracy in the support vector regression algorithm. The prediction accuracy of knee motion with this scheme was 94.54% ± 2.98. Notably, the forecast time was halved in comparison to the other combinations. The independent component analysis algorithm’s “blind source separation” feature effectively separates the original surface electromyogram signal and reduces signal noise, hence increasing prediction efficiency. The main contribution of this work is that the method (independent component analysis + support vector regression) has the potency of best prediction of surface electromyogram signal for knee movement. This work is the first step toward myoelectric control of assisted exoskeleton robots through discrete decoding.\",\"PeriodicalId\":50343,\"journal\":{\"name\":\"International Journal of Advanced Robotic Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Robotic Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/17298806221119668\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/17298806221119668","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
Prediction of knee trajectory based on surface electromyogram with independent component analysis combined with support vector regression
In recent years, surface electromyogram signals have been increasingly used to operate wearable devices. These devices can aid to help workers or soldiers to lower the load in the task to boost efficiency. However, achieving effective signal prediction has always been a challenge. It is critical to use an appropriate signal preprocessing method and prediction algorithm when developing a controller that can accurately predict and control human movements in real time. For this purpose, this article investigates the effect of various surface electromyogram preprocessing methods and algorithms on prediction results. Walking data (surface electromyogram angle) were collected from 10 adults (5 males and 5 females). To investigate the effect of preprocessing methods on the experimental results, the raw surface electromyogram signals were grouped and subjected to different preprocessing (bandpass/principal component analysis/independent component analysis, respectively). The processed data were then imported into the random forest and support vector regression algorithm for training and prediction. Multiple scenarios were combined to compare the results. The independent component analysis-processed data had the best performance in terms of convergence time and prediction accuracy in the support vector regression algorithm. The prediction accuracy of knee motion with this scheme was 94.54% ± 2.98. Notably, the forecast time was halved in comparison to the other combinations. The independent component analysis algorithm’s “blind source separation” feature effectively separates the original surface electromyogram signal and reduces signal noise, hence increasing prediction efficiency. The main contribution of this work is that the method (independent component analysis + support vector regression) has the potency of best prediction of surface electromyogram signal for knee movement. This work is the first step toward myoelectric control of assisted exoskeleton robots through discrete decoding.
期刊介绍:
International Journal of Advanced Robotic Systems (IJARS) is a JCR ranked, peer-reviewed open access journal covering the full spectrum of robotics research. The journal is addressed to both practicing professionals and researchers in the field of robotics and its specialty areas. IJARS features fourteen topic areas each headed by a Topic Editor-in-Chief, integrating all aspects of research in robotics under the journal''s domain.