基于鲸鱼优化算法的分布式能源优化潮流

T.Papi Naidu, Ganapathy Balasubramanian, Bathina Venkateshwar Rao
{"title":"基于鲸鱼优化算法的分布式能源优化潮流","authors":"T.Papi Naidu, Ganapathy Balasubramanian, Bathina Venkateshwar Rao","doi":"10.11591/ijece.v13i5.pp4835-4844","DOIUrl":null,"url":null,"abstract":"Renewable energy generation is increasingly attractive since it is non-polluting and viable. Recently, the technical and economic performance of power system networks has been enhanced by integrating renewable energy sources (RES). This work focuses on the size of solar and wind production by replacing the thermal generation to decrease cost and losses on a big electrical power system. The Weibull and Lognormal probability density functions are used to calculate the deliverable power of wind and solar energy, to be integrated into the power system. Due to the uncertain and intermittent conditions of these sources, their integration complicates the optimal power flow problem. This paper proposes an optimal power flow (OPF) using the whale optimization algorithm (WOA), to solve for the stochastic wind and solar power integrated power system. In this paper, the ideal capacity of RES along with thermal generators has been determined by considering total generation cost as an objective function. The proposed methodology is tested on the IEEE-30 system to ensure its usefulness. Obtained results show the effectiveness of WOA when compared with other algorithms like non-dominated sorting genetic algorithm (NSGA-II), grey wolf optimization (GWO) and particle swarm optimization-GWO (PSO-GWO).","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimal power flow with distributed energy sources using whale optimization algorithm\",\"authors\":\"T.Papi Naidu, Ganapathy Balasubramanian, Bathina Venkateshwar Rao\",\"doi\":\"10.11591/ijece.v13i5.pp4835-4844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Renewable energy generation is increasingly attractive since it is non-polluting and viable. Recently, the technical and economic performance of power system networks has been enhanced by integrating renewable energy sources (RES). This work focuses on the size of solar and wind production by replacing the thermal generation to decrease cost and losses on a big electrical power system. The Weibull and Lognormal probability density functions are used to calculate the deliverable power of wind and solar energy, to be integrated into the power system. Due to the uncertain and intermittent conditions of these sources, their integration complicates the optimal power flow problem. This paper proposes an optimal power flow (OPF) using the whale optimization algorithm (WOA), to solve for the stochastic wind and solar power integrated power system. In this paper, the ideal capacity of RES along with thermal generators has been determined by considering total generation cost as an objective function. The proposed methodology is tested on the IEEE-30 system to ensure its usefulness. Obtained results show the effectiveness of WOA when compared with other algorithms like non-dominated sorting genetic algorithm (NSGA-II), grey wolf optimization (GWO) and particle swarm optimization-GWO (PSO-GWO).\",\"PeriodicalId\":38060,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijece.v13i5.pp4835-4844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijece.v13i5.pp4835-4844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1

摘要

可再生能源发电由于无污染且可行,因此越来越具有吸引力。最近,通过整合可再生能源(RES),电力系统网络的技术和经济性能得到了提高。这项工作的重点是通过取代火力发电来降低大型电力系统的成本和损失,从而扩大太阳能和风能的生产规模。威布尔概率密度函数和对数正态概率密度函数用于计算风能和太阳能的可交付功率,将其集成到电力系统中。由于这些电源的不确定性和间歇性条件,它们的集成使最优潮流问题变得复杂。本文提出了一种利用鲸鱼优化算法(WOA)求解随机风能和太阳能集成电力系统的最优潮流(OPF)。在本文中,通过将总发电成本作为一个目标函数,确定了可再生能源和热力发电机的理想容量。所提出的方法在IEEE-30系统上进行了测试,以确保其有用性。结果表明,与非支配排序遗传算法(NSGA-II)、灰狼优化算法(GWO)和粒子群优化算法(PSO-GWO)等其他算法相比,WOA是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal power flow with distributed energy sources using whale optimization algorithm
Renewable energy generation is increasingly attractive since it is non-polluting and viable. Recently, the technical and economic performance of power system networks has been enhanced by integrating renewable energy sources (RES). This work focuses on the size of solar and wind production by replacing the thermal generation to decrease cost and losses on a big electrical power system. The Weibull and Lognormal probability density functions are used to calculate the deliverable power of wind and solar energy, to be integrated into the power system. Due to the uncertain and intermittent conditions of these sources, their integration complicates the optimal power flow problem. This paper proposes an optimal power flow (OPF) using the whale optimization algorithm (WOA), to solve for the stochastic wind and solar power integrated power system. In this paper, the ideal capacity of RES along with thermal generators has been determined by considering total generation cost as an objective function. The proposed methodology is tested on the IEEE-30 system to ensure its usefulness. Obtained results show the effectiveness of WOA when compared with other algorithms like non-dominated sorting genetic algorithm (NSGA-II), grey wolf optimization (GWO) and particle swarm optimization-GWO (PSO-GWO).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Electrical and Computer Engineering
International Journal of Electrical and Computer Engineering Computer Science-Computer Science (all)
CiteScore
4.10
自引率
0.00%
发文量
177
期刊介绍: International Journal of Electrical and Computer Engineering (IJECE) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: -Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation, Medical Imaging Equipment and Techniques, Biomedical Imaging and Image Processing, Biomechanics and Rehabilitation Engineering, Biomaterials and Drug Delivery Systems; -Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction, Electromagnetic Compatibility, High Voltage Insulation Technologies, High Voltage Apparatuses, Lightning Detection and Protection, Power System Analysis, SCADA, Electrical Measurements; -Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging, Distributed Platform, Communication Network and Systems, Telematics Services and Security Network; -Control[...] -Computer and Informatics[...]
期刊最新文献
Ranking load in microgrid based on fuzzy analytic hierarchy process and technique for order of preference by similarity to ideal solution algorithm for load shedding problem Explainable extreme boosting model for breast cancer diagnosis Automatic optical inspection for detecting keycaps misplacement using Tesseract optical character recognition A thermally aware performance analysis of quantum cellular automata logic gates Technical and market evaluation of thermal generation power plants in the Colombia power system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1