用于背景音乐分离的具有扩张卷积的多波段多尺度DenseNet

Woon-Haeng Heo, Hyemi Kim, O. Kwon
{"title":"用于背景音乐分离的具有扩张卷积的多波段多尺度DenseNet","authors":"Woon-Haeng Heo, Hyemi Kim, O. Kwon","doi":"10.7776/ASK.2019.38.6.697","DOIUrl":null,"url":null,"abstract":"We propose a multi-band multi-scale DenseNet with dilated convolution that separates background music signals from broadcast content. Dilated convolution can learn the multi-scale context information represented by spectrogram. In computer simulation experiments, the proposed architecture is shown to improve Signal to Distortion Ratio (SDR) by 0.15 dB and 0.27 dB in 0dB and –10 dB Signal to Noise Ratio (SNR) environments, respectively.","PeriodicalId":42689,"journal":{"name":"Journal of the Acoustical Society of Korea","volume":"38 1","pages":"697-702"},"PeriodicalIF":0.2000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-band multi-scale DenseNet with dilated convolution for background music separation\",\"authors\":\"Woon-Haeng Heo, Hyemi Kim, O. Kwon\",\"doi\":\"10.7776/ASK.2019.38.6.697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a multi-band multi-scale DenseNet with dilated convolution that separates background music signals from broadcast content. Dilated convolution can learn the multi-scale context information represented by spectrogram. In computer simulation experiments, the proposed architecture is shown to improve Signal to Distortion Ratio (SDR) by 0.15 dB and 0.27 dB in 0dB and –10 dB Signal to Noise Ratio (SNR) environments, respectively.\",\"PeriodicalId\":42689,\"journal\":{\"name\":\"Journal of the Acoustical Society of Korea\",\"volume\":\"38 1\",\"pages\":\"697-702\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Acoustical Society of Korea\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7776/ASK.2019.38.6.697\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of Korea","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7776/ASK.2019.38.6.697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种多频带多尺度的扩展卷积DenseNet,用于从广播内容中分离背景音乐信号。展开卷积可以学习由谱图表示的多尺度上下文信息。在计算机仿真实验中,该结构在0dB和-10 dB信噪比(SNR)环境下分别提高了0.15 dB和0.27 dB的信失真比(SDR)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-band multi-scale DenseNet with dilated convolution for background music separation
We propose a multi-band multi-scale DenseNet with dilated convolution that separates background music signals from broadcast content. Dilated convolution can learn the multi-scale context information represented by spectrogram. In computer simulation experiments, the proposed architecture is shown to improve Signal to Distortion Ratio (SDR) by 0.15 dB and 0.27 dB in 0dB and –10 dB Signal to Noise Ratio (SNR) environments, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
50.00%
发文量
1
期刊最新文献
A quantitative analysis of synthetic aperture sonar image distortion according to sonar platform motion parameters Measurements of mid-frequency transmission loss in shallow waters off the East Sea: Comparison with Rayleigh reflection model and high-frequency bottom loss model An explorative study on the perceived emotion of music: according to cognitive styles of music listening A robust data association gate method of non-linear target tracking in dense cluttered environment Performance analysis of weakly-supervised sound event detection system based on the mean-teacher convolutional recurrent neural network model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1