{"title":"基于机器学习模型的交通流量预测的自适应交通灯","authors":"Idriss Moumen, J. Abouchabaka, N. Rafalia","doi":"10.11591/ijece.v13i5.pp5813-5823","DOIUrl":null,"url":null,"abstract":"Traffic congestion prediction is one of the essential components of intelligent transport systems (ITS). This is due to the rapid growth of population and, consequently, the high number of vehicles in cities. Nowadays, the problem of traffic congestion attracts more and more attention from researchers in the field of ITS. Traffic congestion can be predicted in advance by analyzing traffic flow data. In this article, we used machine learning algorithms such as linear regression, random forest regressor, decision tree regressor, gradient boosting regressor, and K-neighbor regressor to predict traffic flow and reduce traffic congestion at intersections. We used the public roads dataset from the UK national road traffic to test our models. All machine learning algorithms obtained good performance metrics, indicating that they are valid for implementation in smart traffic light systems. Next, we implemented an adaptive traffic light system based on a random forest regressor model, which adjusts the timing of green and red lights depending on the road width, traffic density, types of vehicles, and expected traffic. Simulations of the proposed system show a 30.8% reduction in traffic congestion, thus justifying its effectiveness and the interest of deploying it to regulate the signaling problem in intersections.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Adaptive traffic lights based on traffic flow prediction using machine learning models\",\"authors\":\"Idriss Moumen, J. Abouchabaka, N. Rafalia\",\"doi\":\"10.11591/ijece.v13i5.pp5813-5823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic congestion prediction is one of the essential components of intelligent transport systems (ITS). This is due to the rapid growth of population and, consequently, the high number of vehicles in cities. Nowadays, the problem of traffic congestion attracts more and more attention from researchers in the field of ITS. Traffic congestion can be predicted in advance by analyzing traffic flow data. In this article, we used machine learning algorithms such as linear regression, random forest regressor, decision tree regressor, gradient boosting regressor, and K-neighbor regressor to predict traffic flow and reduce traffic congestion at intersections. We used the public roads dataset from the UK national road traffic to test our models. All machine learning algorithms obtained good performance metrics, indicating that they are valid for implementation in smart traffic light systems. Next, we implemented an adaptive traffic light system based on a random forest regressor model, which adjusts the timing of green and red lights depending on the road width, traffic density, types of vehicles, and expected traffic. Simulations of the proposed system show a 30.8% reduction in traffic congestion, thus justifying its effectiveness and the interest of deploying it to regulate the signaling problem in intersections.\",\"PeriodicalId\":38060,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijece.v13i5.pp5813-5823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijece.v13i5.pp5813-5823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
Adaptive traffic lights based on traffic flow prediction using machine learning models
Traffic congestion prediction is one of the essential components of intelligent transport systems (ITS). This is due to the rapid growth of population and, consequently, the high number of vehicles in cities. Nowadays, the problem of traffic congestion attracts more and more attention from researchers in the field of ITS. Traffic congestion can be predicted in advance by analyzing traffic flow data. In this article, we used machine learning algorithms such as linear regression, random forest regressor, decision tree regressor, gradient boosting regressor, and K-neighbor regressor to predict traffic flow and reduce traffic congestion at intersections. We used the public roads dataset from the UK national road traffic to test our models. All machine learning algorithms obtained good performance metrics, indicating that they are valid for implementation in smart traffic light systems. Next, we implemented an adaptive traffic light system based on a random forest regressor model, which adjusts the timing of green and red lights depending on the road width, traffic density, types of vehicles, and expected traffic. Simulations of the proposed system show a 30.8% reduction in traffic congestion, thus justifying its effectiveness and the interest of deploying it to regulate the signaling problem in intersections.
期刊介绍:
International Journal of Electrical and Computer Engineering (IJECE) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: -Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation, Medical Imaging Equipment and Techniques, Biomedical Imaging and Image Processing, Biomechanics and Rehabilitation Engineering, Biomaterials and Drug Delivery Systems; -Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction, Electromagnetic Compatibility, High Voltage Insulation Technologies, High Voltage Apparatuses, Lightning Detection and Protection, Power System Analysis, SCADA, Electrical Measurements; -Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging, Distributed Platform, Communication Network and Systems, Telematics Services and Security Network; -Control[...] -Computer and Informatics[...]