西伯利亚东部雅库茨克附近的勒拿河岛屿的热状态变化

IF 3 3区 地球科学 Q2 GEOGRAPHY, PHYSICAL Permafrost and Periglacial Processes Pub Date : 2022-01-18 DOI:10.1002/ppp.2136
F. Costard, E. Gautier, P. Konstantinov, F. Bouchard, A. Séjourné, L. Dupeyrat, A. Fedorov
{"title":"西伯利亚东部雅库茨克附近的勒拿河岛屿的热状态变化","authors":"F. Costard, E. Gautier, P. Konstantinov, F. Bouchard, A. Séjourné, L. Dupeyrat, A. Fedorov","doi":"10.1002/ppp.2136","DOIUrl":null,"url":null,"abstract":"Recent evidence has shown that Arctic regions have warmed about twice as much as elsewhere on the planet over the last few decades, and that high‐latitude permafrost–periglacial processes and hydrological systems are notably responsive to rising temperatures. The aim of this paper is to report on the thermal regime of islands located along the Lena River floodplain, upstream of the city of Yakutsk (eastern Siberia). Four islands were monitored using waterproof dataloggers and continuous monitoring of frozen soil in contact with ice breakup of the Lena River. For each of these islands, we measured: (a) ground surface temperature, air and frozen soil temperatures at different depths; and (b) submersion duration during the flood. Our results show that within a zone of thick and continuous permafrost, the Lena floodplain is notably heterogeneous, with a combination of permanently and seasonally frozen islands. The ice breakups seem to have a negligible impact on the ground thermal regime. Our study confirms that relatively young (<30 years old) islands, composed of fine sand material, appear less prone to permafrost formation compared to older islands with ice‐rich silty material.","PeriodicalId":54629,"journal":{"name":"Permafrost and Periglacial Processes","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2022-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Thermal regime variability of islands in the Lena River near Yakutsk, eastern Siberia\",\"authors\":\"F. Costard, E. Gautier, P. Konstantinov, F. Bouchard, A. Séjourné, L. Dupeyrat, A. Fedorov\",\"doi\":\"10.1002/ppp.2136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent evidence has shown that Arctic regions have warmed about twice as much as elsewhere on the planet over the last few decades, and that high‐latitude permafrost–periglacial processes and hydrological systems are notably responsive to rising temperatures. The aim of this paper is to report on the thermal regime of islands located along the Lena River floodplain, upstream of the city of Yakutsk (eastern Siberia). Four islands were monitored using waterproof dataloggers and continuous monitoring of frozen soil in contact with ice breakup of the Lena River. For each of these islands, we measured: (a) ground surface temperature, air and frozen soil temperatures at different depths; and (b) submersion duration during the flood. Our results show that within a zone of thick and continuous permafrost, the Lena floodplain is notably heterogeneous, with a combination of permanently and seasonally frozen islands. The ice breakups seem to have a negligible impact on the ground thermal regime. Our study confirms that relatively young (<30 years old) islands, composed of fine sand material, appear less prone to permafrost formation compared to older islands with ice‐rich silty material.\",\"PeriodicalId\":54629,\"journal\":{\"name\":\"Permafrost and Periglacial Processes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Permafrost and Periglacial Processes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/ppp.2136\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Permafrost and Periglacial Processes","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/ppp.2136","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 4

摘要

最近的证据表明,在过去几十年里,北极地区的变暖幅度是地球上其他地区的两倍左右,高纬度永久冻土-冰缘过程和水文系统对温度上升的反应尤为明显。本文的目的是报告沿列拿河洪泛区,上游城市雅库茨克(西伯利亚东部)的岛屿的热制度。使用防水数据记录仪和连续监测与勒拿河冰崩解接触的冻土对四个岛屿进行监测。对于每个岛屿,我们测量了:(a)不同深度的地表温度、空气和冻土温度;(b)洪水期间的淹没时间。研究结果表明,在厚而连续的永久冻土带内,勒拿河漫滩具有明显的非均匀性,包括永久和季节性冻结的岛屿。冰的破裂似乎对地面热状态的影响微不足道。我们的研究证实,相对年轻(<30岁)的岛屿,由细沙材料组成,与富含冰的粉质物质的古老岛屿相比,似乎不太容易形成永久冻土。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermal regime variability of islands in the Lena River near Yakutsk, eastern Siberia
Recent evidence has shown that Arctic regions have warmed about twice as much as elsewhere on the planet over the last few decades, and that high‐latitude permafrost–periglacial processes and hydrological systems are notably responsive to rising temperatures. The aim of this paper is to report on the thermal regime of islands located along the Lena River floodplain, upstream of the city of Yakutsk (eastern Siberia). Four islands were monitored using waterproof dataloggers and continuous monitoring of frozen soil in contact with ice breakup of the Lena River. For each of these islands, we measured: (a) ground surface temperature, air and frozen soil temperatures at different depths; and (b) submersion duration during the flood. Our results show that within a zone of thick and continuous permafrost, the Lena floodplain is notably heterogeneous, with a combination of permanently and seasonally frozen islands. The ice breakups seem to have a negligible impact on the ground thermal regime. Our study confirms that relatively young (<30 years old) islands, composed of fine sand material, appear less prone to permafrost formation compared to older islands with ice‐rich silty material.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.70
自引率
8.00%
发文量
43
审稿时长
>12 weeks
期刊介绍: Permafrost and Periglacial Processes is an international journal dedicated to the rapid publication of scientific and technical papers concerned with earth surface cryogenic processes, landforms and sediments present in a variety of (Sub) Arctic, Antarctic and High Mountain environments. It provides an efficient vehicle of communication amongst those with an interest in the cold, non-glacial geosciences. The focus is on (1) original research based on geomorphological, hydrological, sedimentological, geotechnical and engineering aspects of these areas and (2) original research carried out upon relict features where the objective has been to reconstruct the nature of the processes and/or palaeoenvironments which gave rise to these features, as opposed to purely stratigraphical considerations. The journal also publishes short communications, reviews, discussions and book reviews. The high scientific standard, interdisciplinary character and worldwide representation of PPP are maintained by regional editorial support and a rigorous refereeing system.
期刊最新文献
Effects of Wildfires on Soil Organic Carbon in Boreal Permafrost Regions: A Review Synchronous Isotopic Curves in Ice Wedges of the Batagay Yedoma: Precision Matching and Similarity Scoring Sensitivity of Permafrost Degradation to Geological and Climatic Conditions A Biogeochemical Study of Greenhouse Gas Formation From Two Ice Complexes of Batagay Megaslump, East Siberia Optically‐Stimulated‐Luminescence Ages and Paleo‐Environmental Implications of Relict Frost Wedges in North–Central Bohemia, Czech Republic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1