条件独立条件下异质因果效应的非参数识别与估计

IF 0.8 4区 经济学 Q3 ECONOMICS Econometric Reviews Pub Date : 2023-02-07 DOI:10.1080/07474938.2023.2178140
Sungho Noh
{"title":"条件独立条件下异质因果效应的非参数识别与估计","authors":"Sungho Noh","doi":"10.1080/07474938.2023.2178140","DOIUrl":null,"url":null,"abstract":"Abstract In this article, I propose a nonparametric strategy to identify the distribution of heterogeneous causal effects. A set of identification restrictions proposed in this article differs from existing approaches in three ways. First, it extends the random coefficient model by allowing potentially nonlinear interactions between distributional parameters and the set of covariates. Second, the causal effect distributions identified in this article give an alternative to those under the rank invariance assumption. Third, identified distribution lies within the sharp bound of distributions of the treatment effect. I develop a consistent nonparametric estimator exploiting the identifying restriction by extending the conventional statistical deconvolution method to the Rubin causal framework. Results from a Monte Carlo experiment and an application to wage loss of displaced workers suggest that the method yields robust estimates under various scenarios.","PeriodicalId":11438,"journal":{"name":"Econometric Reviews","volume":"42 1","pages":"307 - 341"},"PeriodicalIF":0.8000,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonparametric identification and estimation of heterogeneous causal effects under conditional independence\",\"authors\":\"Sungho Noh\",\"doi\":\"10.1080/07474938.2023.2178140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, I propose a nonparametric strategy to identify the distribution of heterogeneous causal effects. A set of identification restrictions proposed in this article differs from existing approaches in three ways. First, it extends the random coefficient model by allowing potentially nonlinear interactions between distributional parameters and the set of covariates. Second, the causal effect distributions identified in this article give an alternative to those under the rank invariance assumption. Third, identified distribution lies within the sharp bound of distributions of the treatment effect. I develop a consistent nonparametric estimator exploiting the identifying restriction by extending the conventional statistical deconvolution method to the Rubin causal framework. Results from a Monte Carlo experiment and an application to wage loss of displaced workers suggest that the method yields robust estimates under various scenarios.\",\"PeriodicalId\":11438,\"journal\":{\"name\":\"Econometric Reviews\",\"volume\":\"42 1\",\"pages\":\"307 - 341\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Reviews\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/07474938.2023.2178140\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Reviews","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/07474938.2023.2178140","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要在本文中,我提出了一种非参数策略来识别异质因果效应的分布。本文提出的一套身份限制与现有方法有三个不同之处。首先,它通过允许分布参数和协变量集之间潜在的非线性相互作用来扩展随机系数模型。其次,本文中确定的因果效应分布为秩不变性假设下的因果效应提供了一种替代方案。第三,已确定的分布位于治疗效果分布的锐界内。我通过将传统的统计反卷积方法扩展到鲁宾因果框架,开发了一个利用识别限制的一致非参数估计量。蒙特卡洛实验的结果和对失业工人工资损失的应用表明,该方法在各种情况下都能产生稳健的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonparametric identification and estimation of heterogeneous causal effects under conditional independence
Abstract In this article, I propose a nonparametric strategy to identify the distribution of heterogeneous causal effects. A set of identification restrictions proposed in this article differs from existing approaches in three ways. First, it extends the random coefficient model by allowing potentially nonlinear interactions between distributional parameters and the set of covariates. Second, the causal effect distributions identified in this article give an alternative to those under the rank invariance assumption. Third, identified distribution lies within the sharp bound of distributions of the treatment effect. I develop a consistent nonparametric estimator exploiting the identifying restriction by extending the conventional statistical deconvolution method to the Rubin causal framework. Results from a Monte Carlo experiment and an application to wage loss of displaced workers suggest that the method yields robust estimates under various scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Econometric Reviews
Econometric Reviews 管理科学-数学跨学科应用
CiteScore
1.70
自引率
0.00%
发文量
27
审稿时长
>12 weeks
期刊介绍: Econometric Reviews is widely regarded as one of the top 5 core journals in econometrics. It probes the limits of econometric knowledge, featuring regular, state-of-the-art single blind refereed articles and book reviews. ER has been consistently the leader and innovator in its acclaimed retrospective and critical surveys and interchanges on current or developing topics. Special issues of the journal are developed by a world-renowned editorial board. These bring together leading experts from econometrics and beyond. Reviews of books and software are also within the scope of the journal. Its content is expressly intended to reach beyond econometrics and advanced empirical economics, to statistics and other social sciences.
期刊最新文献
Estimation of random functions proxying for unobservables Bootstrap inference on a factor model based average treatment effects estimator Using machine learning for efficient flexible regression adjustment in economic experiments Lag order selection for long-run variance estimation in econometrics Selecting the number of factors in approximate factor models using group variable regularization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1