使用机器学习技术的移动设备基于行为的安全

S. Rashad, Jonathan M. R. Byrd
{"title":"使用机器学习技术的移动设备基于行为的安全","authors":"S. Rashad, Jonathan M. R. Byrd","doi":"10.5121/IJAIA.2018.9401","DOIUrl":null,"url":null,"abstract":"The goal of this research project is to design and implement a mobile application and machine learning techniques to solve problems related to the security of mobile devices. We introduce in this paper a behavior-based approach that can be applied in a mobile environment to capture and learn the behavior of mobile users. The proposed system was tested using Android OS and the initial experimental results show that the proposed technique is promising, and it can be used effectively to solve the problem of anomaly detection in mobile devices.","PeriodicalId":93188,"journal":{"name":"International journal of artificial intelligence & applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Behavior-Based Security for Mobile Devices Using Machine Learning Techniques\",\"authors\":\"S. Rashad, Jonathan M. R. Byrd\",\"doi\":\"10.5121/IJAIA.2018.9401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this research project is to design and implement a mobile application and machine learning techniques to solve problems related to the security of mobile devices. We introduce in this paper a behavior-based approach that can be applied in a mobile environment to capture and learn the behavior of mobile users. The proposed system was tested using Android OS and the initial experimental results show that the proposed technique is promising, and it can be used effectively to solve the problem of anomaly detection in mobile devices.\",\"PeriodicalId\":93188,\"journal\":{\"name\":\"International journal of artificial intelligence & applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of artificial intelligence & applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/IJAIA.2018.9401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of artificial intelligence & applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/IJAIA.2018.9401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本研究项目的目标是设计和实现一个移动应用程序和机器学习技术,以解决与移动设备安全相关的问题。本文介绍了一种基于行为的方法,该方法可以应用于移动环境中,以捕获和学习移动用户的行为。在Android操作系统上对所提出的系统进行了测试,初步实验结果表明,所提出的技术是有前途的,可以有效地用于解决移动设备中的异常检测问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Behavior-Based Security for Mobile Devices Using Machine Learning Techniques
The goal of this research project is to design and implement a mobile application and machine learning techniques to solve problems related to the security of mobile devices. We introduce in this paper a behavior-based approach that can be applied in a mobile environment to capture and learn the behavior of mobile users. The proposed system was tested using Android OS and the initial experimental results show that the proposed technique is promising, and it can be used effectively to solve the problem of anomaly detection in mobile devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characteristics of Networks Generated by Kernel Growing Neural Gas Identifying Text Classification Failures in Multilingual AI-Generated Content Subverting Characters Stereotypes: Exploring the Role of AI in Stereotype Subversion Performance Evaluation of Block-Sized Algorithms for Majority Vote in Facial Recognition Sentiment Analysis in Indian Elections: Unraveling Public Perception of the Karnataka Elections With Transformers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1