A. Cesiul, K. Ikamas, D. B. But, I. Morkunaitė, T. Lisauskas, A. Lisauskas
{"title":"用紧凑的全电子太赫兹源和探测器系统实现无线数据传输","authors":"A. Cesiul, K. Ikamas, D. B. But, I. Morkunaitė, T. Lisauskas, A. Lisauskas","doi":"10.3952/physics.v62i3.4796","DOIUrl":null,"url":null,"abstract":"This paper presents a fully-electronic wireless link operating at the 250 GHz frequency. The key elements of the developed system are the voltage-controlled harmonic oscillator implemented in 65 nm complementary metal-oxide-semiconductor technology (CMOS) and a quasi-optical detector with a resonantantenna- coupled field-effect transistor completed in 90 nm CMOS. The source is optimized for the third harmonic emission at 252 GHz with radiated power reaching up to –11 dBm (decibels with reference to one milliwatt) level. The detector has a resonance maximum of 254 GHz with a bandwidth of 25% and a minimal optical noise equivalent power of 22 pW/√−H−z . We employ an on-off keying technique for data coding and demonstrate digital signal transmission from 0.4 to 18 m distances. At 0.4 m distance and modulation frequency of 32 MHz, we achieve a 15.9 dB signal-to-noise ratio. The channel capacity of assembled communication link reaches 266 Mbit/s. However, it is limited by external electronic components – the amplifier and the modulator bandwidths. Implementing state-of-the-art high-frequency circuits should allow directly scaling the throughput to 10 Gbit/s.","PeriodicalId":18144,"journal":{"name":"Lithuanian Journal of Physics","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Towards wireless data transmission with compact all-electronic THz source and detector system\",\"authors\":\"A. Cesiul, K. Ikamas, D. B. But, I. Morkunaitė, T. Lisauskas, A. Lisauskas\",\"doi\":\"10.3952/physics.v62i3.4796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a fully-electronic wireless link operating at the 250 GHz frequency. The key elements of the developed system are the voltage-controlled harmonic oscillator implemented in 65 nm complementary metal-oxide-semiconductor technology (CMOS) and a quasi-optical detector with a resonantantenna- coupled field-effect transistor completed in 90 nm CMOS. The source is optimized for the third harmonic emission at 252 GHz with radiated power reaching up to –11 dBm (decibels with reference to one milliwatt) level. The detector has a resonance maximum of 254 GHz with a bandwidth of 25% and a minimal optical noise equivalent power of 22 pW/√−H−z . We employ an on-off keying technique for data coding and demonstrate digital signal transmission from 0.4 to 18 m distances. At 0.4 m distance and modulation frequency of 32 MHz, we achieve a 15.9 dB signal-to-noise ratio. The channel capacity of assembled communication link reaches 266 Mbit/s. However, it is limited by external electronic components – the amplifier and the modulator bandwidths. Implementing state-of-the-art high-frequency circuits should allow directly scaling the throughput to 10 Gbit/s.\",\"PeriodicalId\":18144,\"journal\":{\"name\":\"Lithuanian Journal of Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lithuanian Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3952/physics.v62i3.4796\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lithuanian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3952/physics.v62i3.4796","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Towards wireless data transmission with compact all-electronic THz source and detector system
This paper presents a fully-electronic wireless link operating at the 250 GHz frequency. The key elements of the developed system are the voltage-controlled harmonic oscillator implemented in 65 nm complementary metal-oxide-semiconductor technology (CMOS) and a quasi-optical detector with a resonantantenna- coupled field-effect transistor completed in 90 nm CMOS. The source is optimized for the third harmonic emission at 252 GHz with radiated power reaching up to –11 dBm (decibels with reference to one milliwatt) level. The detector has a resonance maximum of 254 GHz with a bandwidth of 25% and a minimal optical noise equivalent power of 22 pW/√−H−z . We employ an on-off keying technique for data coding and demonstrate digital signal transmission from 0.4 to 18 m distances. At 0.4 m distance and modulation frequency of 32 MHz, we achieve a 15.9 dB signal-to-noise ratio. The channel capacity of assembled communication link reaches 266 Mbit/s. However, it is limited by external electronic components – the amplifier and the modulator bandwidths. Implementing state-of-the-art high-frequency circuits should allow directly scaling the throughput to 10 Gbit/s.
期刊介绍:
The main aim of the Lithuanian Journal of Physics is to reflect the most recent advances in various fields of theoretical, experimental, and applied physics, including: mathematical and computational physics; subatomic physics; atoms and molecules; chemical physics; electrodynamics and wave processes; nonlinear and coherent optics; spectroscopy.