新加坡土壤有机碳储量随森林演替和土地管理的变化

IF 1 4区 环境科学与生态学 Q4 ECOLOGY Journal of Tropical Ecology Pub Date : 2022-05-10 DOI:10.1017/s0266467422000177
M. Kleine, Subhadip Ghosh, E. Leitgeb, A. Berger, H. B. Ibrahim, T. Gschwantner, L. Ow, K. Michel
{"title":"新加坡土壤有机碳储量随森林演替和土地管理的变化","authors":"M. Kleine, Subhadip Ghosh, E. Leitgeb, A. Berger, H. B. Ibrahim, T. Gschwantner, L. Ow, K. Michel","doi":"10.1017/s0266467422000177","DOIUrl":null,"url":null,"abstract":"\n Land-use changes and forest management decisions can profoundly alter soil organic carbon (SOC) stocks. Therefore, the objective of this study was to investigate whether existing SOC stocks in the forests of Singapore can be related to successional stages of forest vegetation following disturbances. A forest classification system was developed using information about land use history and vegetation data from 21 inventory plots collected within the framework of Singapore’s IPCC-compatible greenhouse gas reporting system. The forest successional classes obtained were related to SOC stocks (0–50 cm) determined on the same plots. The inventory plots were assigned to four classes. Primary forests (Class 1) were dominated by late succession native species. Secondary forests representing natural forest succession (Class 2) contained younger native trees and a few large trees. Secondary forests after tree plantation/fruit orchard (Class 3) and after agricultural crop cultivation (Class 4) were characterised by large proportions of exotic tree species. Maximum stocks of SOC declined from Class 1 (127.7 Mg ha−1) to Class 4 (35.2 Mg ha−1). The results of a principal component analysis confirmed our forest classification. Plant-related parameters can be successfully used to classify the forests in Singapore, which also show clear differences in SOC.","PeriodicalId":49968,"journal":{"name":"Journal of Tropical Ecology","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variation in soil organic carbon stocks in Singapore with forest succession and land management\",\"authors\":\"M. Kleine, Subhadip Ghosh, E. Leitgeb, A. Berger, H. B. Ibrahim, T. Gschwantner, L. Ow, K. Michel\",\"doi\":\"10.1017/s0266467422000177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Land-use changes and forest management decisions can profoundly alter soil organic carbon (SOC) stocks. Therefore, the objective of this study was to investigate whether existing SOC stocks in the forests of Singapore can be related to successional stages of forest vegetation following disturbances. A forest classification system was developed using information about land use history and vegetation data from 21 inventory plots collected within the framework of Singapore’s IPCC-compatible greenhouse gas reporting system. The forest successional classes obtained were related to SOC stocks (0–50 cm) determined on the same plots. The inventory plots were assigned to four classes. Primary forests (Class 1) were dominated by late succession native species. Secondary forests representing natural forest succession (Class 2) contained younger native trees and a few large trees. Secondary forests after tree plantation/fruit orchard (Class 3) and after agricultural crop cultivation (Class 4) were characterised by large proportions of exotic tree species. Maximum stocks of SOC declined from Class 1 (127.7 Mg ha−1) to Class 4 (35.2 Mg ha−1). The results of a principal component analysis confirmed our forest classification. Plant-related parameters can be successfully used to classify the forests in Singapore, which also show clear differences in SOC.\",\"PeriodicalId\":49968,\"journal\":{\"name\":\"Journal of Tropical Ecology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Tropical Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1017/s0266467422000177\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tropical Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1017/s0266467422000177","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

土地利用变化和森林管理决策可以深刻改变土壤有机碳储量。因此,本研究的目的是调查新加坡森林中现有的SOC储量是否与干扰后森林植被的演替阶段有关。利用在新加坡气专委兼容的温室气体报告系统框架内收集的21个清查地块的土地使用历史和植被数据信息,开发了一个森林分类系统。获得的森林演替等级与在相同地块上确定的SOC储量(0-50 cm)有关。库存图分为四类。原生林(1类)以演替后期的本地物种为主。代表自然森林演替的次生林(第2类)包括较年轻的本土树木和一些大树。植树/果园后的次生林(第3类)和农业作物种植后的次生林(第4类)以大量外来树种为特征。SOC的最大储量从1类(127.7 Mg ha−1)下降到4类(35.2 Mg ha–1)。主成分分析的结果证实了我们的森林分类。植物相关参数可以成功地用于新加坡的森林分类,这也显示出SOC的明显差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Variation in soil organic carbon stocks in Singapore with forest succession and land management
Land-use changes and forest management decisions can profoundly alter soil organic carbon (SOC) stocks. Therefore, the objective of this study was to investigate whether existing SOC stocks in the forests of Singapore can be related to successional stages of forest vegetation following disturbances. A forest classification system was developed using information about land use history and vegetation data from 21 inventory plots collected within the framework of Singapore’s IPCC-compatible greenhouse gas reporting system. The forest successional classes obtained were related to SOC stocks (0–50 cm) determined on the same plots. The inventory plots were assigned to four classes. Primary forests (Class 1) were dominated by late succession native species. Secondary forests representing natural forest succession (Class 2) contained younger native trees and a few large trees. Secondary forests after tree plantation/fruit orchard (Class 3) and after agricultural crop cultivation (Class 4) were characterised by large proportions of exotic tree species. Maximum stocks of SOC declined from Class 1 (127.7 Mg ha−1) to Class 4 (35.2 Mg ha−1). The results of a principal component analysis confirmed our forest classification. Plant-related parameters can be successfully used to classify the forests in Singapore, which also show clear differences in SOC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Tropical Ecology
Journal of Tropical Ecology 环境科学-生态学
CiteScore
2.10
自引率
0.00%
发文量
44
审稿时长
18-36 weeks
期刊介绍: Journal of Tropical Ecology aims to address topics of general relevance and significance to tropical ecology. This includes sub-disciplines of ecology, such as conservation biology, evolutionary ecology, marine ecology, microbial ecology, molecular ecology, quantitative ecology, etc. Studies in the field of tropical medicine, specifically where it involves ecological surroundings (e.g., zoonotic or vector-borne disease ecology), are also suitable. We also welcome methods papers, provided that the techniques are well-described and are of broad general utility. Please keep in mind that studies focused on specific geographic regions or on particular taxa will be better suited to more specialist journals. In order to help the editors make their decision, in your cover letter please address the specific hypothesis your study addresses, and how the results will interest the broad field of tropical ecology. While we will consider purely descriptive studies of outstanding general interest, the case for them should be made in the cover letter.
期刊最新文献
Climate and vegetation collectively drive soil respiration in montane forest-grassland landscapes of the southern Western Ghats, India Belowground differentiation among trees in a degraded tropical dry forest landscape: no evidence of a collaboration gradient Living in the edge: large terrestrial mammal and bird species traits and the ability to cope with extreme environmental conditions and human disturbance in a tropical dry forest in Colombia Do epiphytes affect the fitness of their phorophytes? The case of Tillandsia recurvata on Bursera copallifera Statistical analysis of species association indices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1