用不同方法改性的高岭土加氢裂化燃料油

Aisha Hasanova, Arzu Alizade, Rana Ahmadova, Gulbaniz Mukhtarova, Vagif Abbasov
{"title":"用不同方法改性的高岭土加氢裂化燃料油","authors":"Aisha Hasanova,&nbsp;Arzu Alizade,&nbsp;Rana Ahmadova,&nbsp;Gulbaniz Mukhtarova,&nbsp;Vagif Abbasov","doi":"10.1007/s13203-019-00234-7","DOIUrl":null,"url":null,"abstract":"<p>The presented article shows the studies of hydrocracking process of fuel oil with the purpose of obtaining light oil products (benzene and diesel fractions) from heavy oil residues (fuel oil), thus, deepening the refining of oil. The hydrocracking of fuel oil was conducted in the presence of halloysite modified with transition metals (Mo, Ni). Toward this end, halloysite was modified by two different methods—absorption and ion-exchange methods. It was shown that, at optimal conditions (430?°C, 4?MPa), 46.6% (wt.), 53.0% (wt.), 63.0% (wt.) and 83.0% (wt.) light oil products are obtained by the hydrocracking process of fuel oil carried out without catalyst, in the presence of unmodified halloysite, halloysite modified by absorption method and halloysite modified by ion-exchange method, respectively. The obtained benzene and diesel fractions after hydrorefining process can be added to fuels as components.</p>","PeriodicalId":472,"journal":{"name":"Applied Petrochemical Research","volume":"9 3-4","pages":"199 - 209"},"PeriodicalIF":0.1250,"publicationDate":"2019-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13203-019-00234-7","citationCount":"6","resultStr":"{\"title\":\"Hydrocracking process of fuel oil using halloysite modified by different methods\",\"authors\":\"Aisha Hasanova,&nbsp;Arzu Alizade,&nbsp;Rana Ahmadova,&nbsp;Gulbaniz Mukhtarova,&nbsp;Vagif Abbasov\",\"doi\":\"10.1007/s13203-019-00234-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The presented article shows the studies of hydrocracking process of fuel oil with the purpose of obtaining light oil products (benzene and diesel fractions) from heavy oil residues (fuel oil), thus, deepening the refining of oil. The hydrocracking of fuel oil was conducted in the presence of halloysite modified with transition metals (Mo, Ni). Toward this end, halloysite was modified by two different methods—absorption and ion-exchange methods. It was shown that, at optimal conditions (430?°C, 4?MPa), 46.6% (wt.), 53.0% (wt.), 63.0% (wt.) and 83.0% (wt.) light oil products are obtained by the hydrocracking process of fuel oil carried out without catalyst, in the presence of unmodified halloysite, halloysite modified by absorption method and halloysite modified by ion-exchange method, respectively. The obtained benzene and diesel fractions after hydrorefining process can be added to fuels as components.</p>\",\"PeriodicalId\":472,\"journal\":{\"name\":\"Applied Petrochemical Research\",\"volume\":\"9 3-4\",\"pages\":\"199 - 209\"},\"PeriodicalIF\":0.1250,\"publicationDate\":\"2019-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s13203-019-00234-7\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Petrochemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13203-019-00234-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Petrochemical Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13203-019-00234-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文介绍了燃料油加氢裂化工艺的研究,目的是从重油残渣(燃料油)中获得轻质油产品(苯和柴油馏分),从而加深石油的精炼。在过渡金属(Mo、Ni)改性的高岭土存在下,对燃料油进行了加氢裂化反应。为此,用两种不同的方法——吸收法和离子交换法对高岭土进行了改性。结果表明,在最佳条件下(430?在未改性的高岭土、吸附改性高岭土和离子交换改性高岭土存在的情况下,无催化剂加氢裂化,轻质油的收率分别为46.6% (wt.)、53.0% (wt.)、63.0% (wt.)和83.0% (wt.)。加氢精制后得到的苯和柴油馏分可作为组分加入燃料中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hydrocracking process of fuel oil using halloysite modified by different methods

The presented article shows the studies of hydrocracking process of fuel oil with the purpose of obtaining light oil products (benzene and diesel fractions) from heavy oil residues (fuel oil), thus, deepening the refining of oil. The hydrocracking of fuel oil was conducted in the presence of halloysite modified with transition metals (Mo, Ni). Toward this end, halloysite was modified by two different methods—absorption and ion-exchange methods. It was shown that, at optimal conditions (430?°C, 4?MPa), 46.6% (wt.), 53.0% (wt.), 63.0% (wt.) and 83.0% (wt.) light oil products are obtained by the hydrocracking process of fuel oil carried out without catalyst, in the presence of unmodified halloysite, halloysite modified by absorption method and halloysite modified by ion-exchange method, respectively. The obtained benzene and diesel fractions after hydrorefining process can be added to fuels as components.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Petrochemical Research
Applied Petrochemical Research ENGINEERING, CHEMICAL-
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊介绍: Applied Petrochemical Research is a quarterly Open Access journal supported by King Abdulaziz City for Science and Technology and all the manuscripts are single-blind peer-reviewed for scientific quality and acceptance. The article-processing charge (APC) for all authors is covered by KACST. Publication of original applied research on all aspects of the petrochemical industry focusing on new and smart technologies that allow the production of value-added end products in a cost-effective way. Topics of interest include: • Review of Petrochemical Processes • Reaction Engineering • Design • Catalysis • Pilot Plant and Production Studies • Synthesis As Applied to any of the following aspects of Petrochemical Research: -Feedstock Petrochemicals: Ethylene Production, Propylene Production, Butylene Production, Aromatics Production (Benzene, Toluene, Xylene etc...), Oxygenate Production (Methanol, Ethanol, Propanol etc…), Paraffins and Waxes. -Petrochemical Refining Processes: Cracking (Steam Cracking, Hydrocracking, Fluid Catalytic Cracking), Reforming and Aromatisation, Isomerisation Processes, Dimerization and Polymerization, Aromatic Alkylation, Oxidation Processes, Hydrogenation and Dehydrogenation. -Products: Polymers and Plastics, Lubricants, Speciality and Fine Chemicals (Adhesives, Fragrances, Flavours etc...), Fibres, Pharmaceuticals.
期刊最新文献
Applied petrochemical research: final issue La-Faujasite zeolite activated with boron trifluoride: synthesis and application as solid acid catalyst for isobutane–isobutene alkylation Evaluation of hybrid solvents featuring choline chloride-based deep eutectic solvents and ethanol as extractants for the liquid–liquid extraction of benzene from n-hexane: towards a green and sustainable paradigm Trending approaches on demulsification of crude oil in the petroleum industry Synthesis and study of aroylethyl(ethyl)-xanthates as stabilizers of polymeric materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1