高tc铜酸盐异常的金属导电性

S. Dzhumanov, S. Malikov, Sh.S. Djumanov
{"title":"高tc铜酸盐异常的金属导电性","authors":"S. Dzhumanov, S. Malikov, Sh.S. Djumanov","doi":"10.32523/ejpfm.2021050303","DOIUrl":null,"url":null,"abstract":"The intrinsic mechanisms of the unusual metallic transports of three types of relevant charge carriers (large polarons, excited (dissociated) polaronic components of bosonic Cooper pairs and bosonic Cooper pairs themselves) along the CuO2 layers of high-Tc cuprates are identified and the new features of metallic conductivity in the CuO2 layers (i.e. ab -planes) of underdoped and optimally doped cuprates are explained. The in-plane conductivity of high-Tc cuprates is associated with the metallic transports of such charge carriers at their scattering by lattice vibrations in thin CuO2 layers. The proposed charge transport theory in high-Tc cuprates allows to explain consistently the distinctive features of metallic conductivity and the puzzling experimental data on the temperature dependences of their in-plane resistivity pab. In underdoped and optimally doped cuprates the linear temperature dependence of pab(T) above the pseudogap formation temperature T∗ is associated with the scattering of polaronic carriers at acoustic and optical phonons, while the different (upward and downward) deviations from the linearity in pab(T) below T∗ are caused by the pseudogap effect on the conductivity of the excited Fermi components of bosonic Cooper pairs and by the dominating conductivity of bosonic Cooper pairs themselves in the normal state of these high-Tc materials.","PeriodicalId":36047,"journal":{"name":"Eurasian Journal of Physics and Functional Materials","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unusual metallic conductivity of high-Tc cuprates\",\"authors\":\"S. Dzhumanov, S. Malikov, Sh.S. Djumanov\",\"doi\":\"10.32523/ejpfm.2021050303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The intrinsic mechanisms of the unusual metallic transports of three types of relevant charge carriers (large polarons, excited (dissociated) polaronic components of bosonic Cooper pairs and bosonic Cooper pairs themselves) along the CuO2 layers of high-Tc cuprates are identified and the new features of metallic conductivity in the CuO2 layers (i.e. ab -planes) of underdoped and optimally doped cuprates are explained. The in-plane conductivity of high-Tc cuprates is associated with the metallic transports of such charge carriers at their scattering by lattice vibrations in thin CuO2 layers. The proposed charge transport theory in high-Tc cuprates allows to explain consistently the distinctive features of metallic conductivity and the puzzling experimental data on the temperature dependences of their in-plane resistivity pab. In underdoped and optimally doped cuprates the linear temperature dependence of pab(T) above the pseudogap formation temperature T∗ is associated with the scattering of polaronic carriers at acoustic and optical phonons, while the different (upward and downward) deviations from the linearity in pab(T) below T∗ are caused by the pseudogap effect on the conductivity of the excited Fermi components of bosonic Cooper pairs and by the dominating conductivity of bosonic Cooper pairs themselves in the normal state of these high-Tc materials.\",\"PeriodicalId\":36047,\"journal\":{\"name\":\"Eurasian Journal of Physics and Functional Materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurasian Journal of Physics and Functional Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32523/ejpfm.2021050303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasian Journal of Physics and Functional Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32523/ejpfm.2021050303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

确定了三种相关载流子(大极化子、玻色子库珀对的激发(解离)极化分量和玻色子库珀对本身)沿高tc铜酸盐CuO2层异常金属输运的内在机制,并解释了欠掺杂和最佳掺杂铜酸盐CuO2层(即ab面)金属电导率的新特征。高tc铜酸盐的面内电导率与这些载流子在薄CuO2层中晶格振动散射时的金属输运有关。提出的高tc铜酸盐的电荷输运理论可以一致地解释金属电导率的独特特征以及其面内电阻率对温度依赖性的令人困惑的实验数据。在欠掺杂和最佳掺杂铜酸盐中,pab(T)在赝隙形成温度T *以上的线性温度依赖性与声光声子的极化载流子散射有关。而在T *以下的pab(T)中线性的不同(向上和向下)偏差是由玻色子Cooper对的受激费米分量的赝隙效应和这些高tc材料在正常状态下玻色子Cooper对本身的主导电导率引起的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unusual metallic conductivity of high-Tc cuprates
The intrinsic mechanisms of the unusual metallic transports of three types of relevant charge carriers (large polarons, excited (dissociated) polaronic components of bosonic Cooper pairs and bosonic Cooper pairs themselves) along the CuO2 layers of high-Tc cuprates are identified and the new features of metallic conductivity in the CuO2 layers (i.e. ab -planes) of underdoped and optimally doped cuprates are explained. The in-plane conductivity of high-Tc cuprates is associated with the metallic transports of such charge carriers at their scattering by lattice vibrations in thin CuO2 layers. The proposed charge transport theory in high-Tc cuprates allows to explain consistently the distinctive features of metallic conductivity and the puzzling experimental data on the temperature dependences of their in-plane resistivity pab. In underdoped and optimally doped cuprates the linear temperature dependence of pab(T) above the pseudogap formation temperature T∗ is associated with the scattering of polaronic carriers at acoustic and optical phonons, while the different (upward and downward) deviations from the linearity in pab(T) below T∗ are caused by the pseudogap effect on the conductivity of the excited Fermi components of bosonic Cooper pairs and by the dominating conductivity of bosonic Cooper pairs themselves in the normal state of these high-Tc materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Eurasian Journal of Physics and Functional Materials
Eurasian Journal of Physics and Functional Materials Materials Science-Materials Science (miscellaneous)
CiteScore
1.10
自引率
0.00%
发文量
23
审稿时长
5 weeks
期刊最新文献
High Energy Approximation for Monte Carlo Event generator Study of the effect of combined reinforcement and modification of epoxy resin with rubbers on the impact strength of carbon fiber-reinforced plastic Concentration polarization and ionic conductivity of nanocomposite thermoelectric materials K0.01Cu1.94S, K0.02Cu1.94S, K0.03Cu1.94S Determination of phase boundaries and diffusion coefficients of copper in spinel CuCr2Se4 and delafossite CuCrSe2 by galvanostatic intermittent titration technique (GITT) Luminescence and creation of electron-hole trapping centers in alkali metal sulfates activated by Pb2+ impurity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1