{"title":"不同工况下群桩简支空心板抗震性能比较及剪力板减振器的应用","authors":"","doi":"10.9744/ced.25.1.10-19","DOIUrl":null,"url":null,"abstract":"This study is aimed to compare the seismic performance of simply supported hollow slab on pile group (SHSPG) structures designed as “critical” and “essential” viaducts with shear panel damper (SPD) devices. There were three numerical models to be compared, namely SHSPG-A, SHSPG-B, and SHSPG-C. SHSPG-A is a “critical” viaduct with 35 piles per one pile head. SHSPG-B is an “essential” viaduct with 18 piles per one pile head. SHSPG-C is an “essential” viaduct with 18 piles per one pile head plus sixteen SPDs. Numerical models considered the prestressing effect of the spun pile. Nonlinear time history analyses were executed using seven pairs of recorded ground motions that had been scaled and adjusted to the seismic characteristics of Yogyakarta, Indonesia. As the result, the performance level of SHSPG-A was much better than SHSPG-B. The SPDs application could maintain SHSPG-C’s performance at the same level as SHSPG-A and dissipate 34.28%-53.03% of the seismic energy.","PeriodicalId":30107,"journal":{"name":"Civil Engineering Dimension","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seismic Performance Comparison of Simply Supported Hollow Slab on Pile Group Structure with Different Operational Category and Shear Panel Damper Application\",\"authors\":\"\",\"doi\":\"10.9744/ced.25.1.10-19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study is aimed to compare the seismic performance of simply supported hollow slab on pile group (SHSPG) structures designed as “critical” and “essential” viaducts with shear panel damper (SPD) devices. There were three numerical models to be compared, namely SHSPG-A, SHSPG-B, and SHSPG-C. SHSPG-A is a “critical” viaduct with 35 piles per one pile head. SHSPG-B is an “essential” viaduct with 18 piles per one pile head. SHSPG-C is an “essential” viaduct with 18 piles per one pile head plus sixteen SPDs. Numerical models considered the prestressing effect of the spun pile. Nonlinear time history analyses were executed using seven pairs of recorded ground motions that had been scaled and adjusted to the seismic characteristics of Yogyakarta, Indonesia. As the result, the performance level of SHSPG-A was much better than SHSPG-B. The SPDs application could maintain SHSPG-C’s performance at the same level as SHSPG-A and dissipate 34.28%-53.03% of the seismic energy.\",\"PeriodicalId\":30107,\"journal\":{\"name\":\"Civil Engineering Dimension\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Civil Engineering Dimension\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9744/ced.25.1.10-19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Civil Engineering Dimension","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9744/ced.25.1.10-19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Seismic Performance Comparison of Simply Supported Hollow Slab on Pile Group Structure with Different Operational Category and Shear Panel Damper Application
This study is aimed to compare the seismic performance of simply supported hollow slab on pile group (SHSPG) structures designed as “critical” and “essential” viaducts with shear panel damper (SPD) devices. There were three numerical models to be compared, namely SHSPG-A, SHSPG-B, and SHSPG-C. SHSPG-A is a “critical” viaduct with 35 piles per one pile head. SHSPG-B is an “essential” viaduct with 18 piles per one pile head. SHSPG-C is an “essential” viaduct with 18 piles per one pile head plus sixteen SPDs. Numerical models considered the prestressing effect of the spun pile. Nonlinear time history analyses were executed using seven pairs of recorded ground motions that had been scaled and adjusted to the seismic characteristics of Yogyakarta, Indonesia. As the result, the performance level of SHSPG-A was much better than SHSPG-B. The SPDs application could maintain SHSPG-C’s performance at the same level as SHSPG-A and dissipate 34.28%-53.03% of the seismic energy.