{"title":"基于逆问题的SIR流行病模型系数辨识的COVID-19动力学","authors":"Tchavdar T. Marinov , Rossitza S. Marinova","doi":"10.1016/j.csfx.2020.100041","DOIUrl":null,"url":null,"abstract":"<div><p>This work deals with the inverse problem in epidemiology based on a SIR model with <em>time-dependent</em> infectivity and recovery rates, allowing for a better prediction of the long term evolution of a pandemic. The method is used for investigating the COVID-19 spread by first solving an inverse problem for estimating the infectivity and recovery rates from real data. Then, the estimated rates are used to compute the evolution of the disease. The time-depended parameters are estimated for the World and several countries (The United States of America, Canada, Italy, France, Germany, Sweden, Russia, Brazil, Bulgaria, Japan, South Korea, New Zealand) and used for investigating the COVID-19 spread in these countries.</p></div>","PeriodicalId":37147,"journal":{"name":"Chaos, Solitons and Fractals: X","volume":"5 ","pages":"Article 100041"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.csfx.2020.100041","citationCount":"36","resultStr":"{\"title\":\"Dynamics of COVID-19 using inverse problem for coefficient identification in SIR epidemic models\",\"authors\":\"Tchavdar T. Marinov , Rossitza S. Marinova\",\"doi\":\"10.1016/j.csfx.2020.100041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work deals with the inverse problem in epidemiology based on a SIR model with <em>time-dependent</em> infectivity and recovery rates, allowing for a better prediction of the long term evolution of a pandemic. The method is used for investigating the COVID-19 spread by first solving an inverse problem for estimating the infectivity and recovery rates from real data. Then, the estimated rates are used to compute the evolution of the disease. The time-depended parameters are estimated for the World and several countries (The United States of America, Canada, Italy, France, Germany, Sweden, Russia, Brazil, Bulgaria, Japan, South Korea, New Zealand) and used for investigating the COVID-19 spread in these countries.</p></div>\",\"PeriodicalId\":37147,\"journal\":{\"name\":\"Chaos, Solitons and Fractals: X\",\"volume\":\"5 \",\"pages\":\"Article 100041\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.csfx.2020.100041\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos, Solitons and Fractals: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590054420300221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos, Solitons and Fractals: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590054420300221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Dynamics of COVID-19 using inverse problem for coefficient identification in SIR epidemic models
This work deals with the inverse problem in epidemiology based on a SIR model with time-dependent infectivity and recovery rates, allowing for a better prediction of the long term evolution of a pandemic. The method is used for investigating the COVID-19 spread by first solving an inverse problem for estimating the infectivity and recovery rates from real data. Then, the estimated rates are used to compute the evolution of the disease. The time-depended parameters are estimated for the World and several countries (The United States of America, Canada, Italy, France, Germany, Sweden, Russia, Brazil, Bulgaria, Japan, South Korea, New Zealand) and used for investigating the COVID-19 spread in these countries.