Zhen Zhang, Feng Yang, Xiawei Shao, J. Gu, G. Zha, Haoyun Tu, Bin Xie
{"title":"预应力组合模冷挤压过程的有限元分析与寿命预测","authors":"Zhen Zhang, Feng Yang, Xiawei Shao, J. Gu, G. Zha, Haoyun Tu, Bin Xie","doi":"10.1142/s1756973721420014","DOIUrl":null,"url":null,"abstract":"Improving and stabilizing the life of the die has always been the key to increasing the output of cold precision forging products and reducing the production cost of forgings. The stress state in pre-stressed composed dies during cold extrusion process is investigated in this paper, it shows that the combined die can greatly reduce the tangential tensile stress of the inner wall of the die and reduce the strain energy density of the die, thereby improving the strength of the die and extending the life of the die. By increasing the number of pre-stressed rings, the amount of interference can be changed, which indirectly changes the pre-stress applied to the die. The relationship between the die fatigue life and the number of pre-stressed rings indicates that the design of the pre-stressed composed structure above the inflection point is an excess design, and the optimal design should be near the inflection point.","PeriodicalId":43242,"journal":{"name":"Journal of Multiscale Modelling","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite Element Analysis and Life Prediction of Pre-stressed Composed Dies in Cold Extrusion Process\",\"authors\":\"Zhen Zhang, Feng Yang, Xiawei Shao, J. Gu, G. Zha, Haoyun Tu, Bin Xie\",\"doi\":\"10.1142/s1756973721420014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Improving and stabilizing the life of the die has always been the key to increasing the output of cold precision forging products and reducing the production cost of forgings. The stress state in pre-stressed composed dies during cold extrusion process is investigated in this paper, it shows that the combined die can greatly reduce the tangential tensile stress of the inner wall of the die and reduce the strain energy density of the die, thereby improving the strength of the die and extending the life of the die. By increasing the number of pre-stressed rings, the amount of interference can be changed, which indirectly changes the pre-stress applied to the die. The relationship between the die fatigue life and the number of pre-stressed rings indicates that the design of the pre-stressed composed structure above the inflection point is an excess design, and the optimal design should be near the inflection point.\",\"PeriodicalId\":43242,\"journal\":{\"name\":\"Journal of Multiscale Modelling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multiscale Modelling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1756973721420014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multiscale Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1756973721420014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Finite Element Analysis and Life Prediction of Pre-stressed Composed Dies in Cold Extrusion Process
Improving and stabilizing the life of the die has always been the key to increasing the output of cold precision forging products and reducing the production cost of forgings. The stress state in pre-stressed composed dies during cold extrusion process is investigated in this paper, it shows that the combined die can greatly reduce the tangential tensile stress of the inner wall of the die and reduce the strain energy density of the die, thereby improving the strength of the die and extending the life of the die. By increasing the number of pre-stressed rings, the amount of interference can be changed, which indirectly changes the pre-stress applied to the die. The relationship between the die fatigue life and the number of pre-stressed rings indicates that the design of the pre-stressed composed structure above the inflection point is an excess design, and the optimal design should be near the inflection point.