自闭症谱系障碍中TORCH感染和益生菌群失调引发的持续炎症:未来干预措施的展望

K. Alibek, Luiza Niyazmetova, S. Farmer, Terence Isakov
{"title":"自闭症谱系障碍中TORCH感染和益生菌群失调引发的持续炎症:未来干预措施的展望","authors":"K. Alibek, Luiza Niyazmetova, S. Farmer, Terence Isakov","doi":"10.3897/rio.8.e91179","DOIUrl":null,"url":null,"abstract":"Autism spectrum disorders (ASD) are a range of neurodevelopmental conditions that are clinically present early in childhood with the symptoms of social withdrawal and repetitive behavior. Despite an extensive research on ASD, no commonly accepted theory on the disease etiology exists. Hence, we reviewed several scientific publications, including reviews, preclinical and clinical investigations, and published hypotheses to analyze various opinions on the nature and cause of the disorder. Many studies suggest that infections and inflammation during pregnancy play a significant role in genetic and epigenetic changes in the developing fetus, resulting in an autistic phenotype in a child. Still, there is a lack of comprehensive literature about the multitude of autism inducing factors. Therefore, this article reviews and discusses available scientific evidence on the roles of viral, bacterial, fungal, and parasitic infections, overactivation of the immune system, and intestinal microflora in the pathogenesis and clinical manifestation of ASD. The overview of the scientific publications, including our own studies, suggests that TORCH infections, imbalanced microbiome, and persistent inflammation are significantly associated with the disruption of the social domain in ASD children. The ASD-related changes begin prenatally as maternal-to-fetal immune activation triggered by infection. It results in continuous low-grade inflammation and oxidative stress in a fetus, causing germline and somatic genetic changes in the developing brain and the establishment of the dysregulated immune system. These changes and dysregulations result in central and peripheral nervous systems dysfunctions as well as other comorbid conditions found in autistic children.","PeriodicalId":92718,"journal":{"name":"Research ideas and outcomes","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Persistent Inflammation Initiated by TORCH Infections and Dysbiotic Microbiome in Autism Spectrum Disorders: A Prospect for Future Interventions\",\"authors\":\"K. Alibek, Luiza Niyazmetova, S. Farmer, Terence Isakov\",\"doi\":\"10.3897/rio.8.e91179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autism spectrum disorders (ASD) are a range of neurodevelopmental conditions that are clinically present early in childhood with the symptoms of social withdrawal and repetitive behavior. Despite an extensive research on ASD, no commonly accepted theory on the disease etiology exists. Hence, we reviewed several scientific publications, including reviews, preclinical and clinical investigations, and published hypotheses to analyze various opinions on the nature and cause of the disorder. Many studies suggest that infections and inflammation during pregnancy play a significant role in genetic and epigenetic changes in the developing fetus, resulting in an autistic phenotype in a child. Still, there is a lack of comprehensive literature about the multitude of autism inducing factors. Therefore, this article reviews and discusses available scientific evidence on the roles of viral, bacterial, fungal, and parasitic infections, overactivation of the immune system, and intestinal microflora in the pathogenesis and clinical manifestation of ASD. The overview of the scientific publications, including our own studies, suggests that TORCH infections, imbalanced microbiome, and persistent inflammation are significantly associated with the disruption of the social domain in ASD children. The ASD-related changes begin prenatally as maternal-to-fetal immune activation triggered by infection. It results in continuous low-grade inflammation and oxidative stress in a fetus, causing germline and somatic genetic changes in the developing brain and the establishment of the dysregulated immune system. These changes and dysregulations result in central and peripheral nervous systems dysfunctions as well as other comorbid conditions found in autistic children.\",\"PeriodicalId\":92718,\"journal\":{\"name\":\"Research ideas and outcomes\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research ideas and outcomes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3897/rio.8.e91179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research ideas and outcomes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3897/rio.8.e91179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

自闭症谱系障碍(ASD)是一系列神经发育疾病,在儿童早期临床上表现为社交退缩和重复行为的症状。尽管对ASD进行了广泛的研究,但目前还没有公认的病因理论。因此,我们查阅了几篇科学出版物,包括综述、临床前和临床研究,并发表了假设,以分析关于该疾病性质和原因的各种观点。许多研究表明,怀孕期间的感染和炎症在发育中的胎儿的遗传和表观遗传学变化中起着重要作用,导致儿童出现自闭症表型。尽管如此,关于自闭症的众多诱发因素,仍缺乏全面的文献。因此,本文回顾并讨论了病毒、细菌、真菌和寄生虫感染、免疫系统过度激活和肠道菌群在ASD发病机制和临床表现中的作用的现有科学证据。科学出版物的概述,包括我们自己的研究,表明TORCH感染、不平衡的微生物组和持续的炎症与ASD儿童社会领域的破坏显著相关。ASD相关的变化始于产前,因为感染引发了母体对胎儿的免疫激活。它会导致胎儿持续的低度炎症和氧化应激,导致发育中的大脑发生种系和体细胞遗传变化,并建立失调的免疫系统。这些变化和失调导致中枢和外周神经系统功能障碍,以及自闭症儿童的其他共病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Persistent Inflammation Initiated by TORCH Infections and Dysbiotic Microbiome in Autism Spectrum Disorders: A Prospect for Future Interventions
Autism spectrum disorders (ASD) are a range of neurodevelopmental conditions that are clinically present early in childhood with the symptoms of social withdrawal and repetitive behavior. Despite an extensive research on ASD, no commonly accepted theory on the disease etiology exists. Hence, we reviewed several scientific publications, including reviews, preclinical and clinical investigations, and published hypotheses to analyze various opinions on the nature and cause of the disorder. Many studies suggest that infections and inflammation during pregnancy play a significant role in genetic and epigenetic changes in the developing fetus, resulting in an autistic phenotype in a child. Still, there is a lack of comprehensive literature about the multitude of autism inducing factors. Therefore, this article reviews and discusses available scientific evidence on the roles of viral, bacterial, fungal, and parasitic infections, overactivation of the immune system, and intestinal microflora in the pathogenesis and clinical manifestation of ASD. The overview of the scientific publications, including our own studies, suggests that TORCH infections, imbalanced microbiome, and persistent inflammation are significantly associated with the disruption of the social domain in ASD children. The ASD-related changes begin prenatally as maternal-to-fetal immune activation triggered by infection. It results in continuous low-grade inflammation and oxidative stress in a fetus, causing germline and somatic genetic changes in the developing brain and the establishment of the dysregulated immune system. These changes and dysregulations result in central and peripheral nervous systems dysfunctions as well as other comorbid conditions found in autistic children.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
2 weeks
期刊最新文献
ECOSENSE - Multi-scale quantification and modelling of spatio-temporal dynamics of ecosystem processes by smart autonomous sensor networks Earth deity shrines of the Greater Taipei area: A first edition curated dataset Restoring the Lower Danube River's wetlands: a short report on the hydrological effectiveness of completed projects Interim Report NFDI4Chem 2023 The Meise Botanic Garden Herbarium Data Management Plan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1