haplomitium mnioides (Haplomitriopsida)减数分裂微管组织和质体分布

Masaki Shimamura
{"title":"haplomitium mnioides (Haplomitriopsida)减数分裂微管组织和质体分布","authors":"Masaki Shimamura","doi":"10.11646/bde.45.1.5","DOIUrl":null,"url":null,"abstract":"The organization of microtubules and plastid distribution of the liverwort, Haplomitrium mnioides (Haplomitriopsida), was studied during the meiotic phase lasting for six months. In the late fall, the cytoplasm of early sporocytes forms four lobes of future spore domains before meiotic prophase. Microtubules align at the cytoplasmic cleavage furrow regions as girdling bands in the four-lobed sporocytes. Finally, the cleavage furrows are proximal to the nucleus positioned in the center of the sporocyte, and the girdling bands of the microtubule (GBM) disappear. Subsequently, the nucleus moves into one of the cytoplasmic lobes, and sporocytes pass the winter season at this stage. In early spring, the nucleus returns to the central position of the lobed cytoplasm, concurrent with plastid repositioning around the nucleus. Plastids are then distributed equally to each of the four lobes as a plastid cluster. Astral microtubules emanate from the plastid cluster in each spore domain and encage prophase nuclei as a quadripolar microtubule system (QMS). The QMS changes into a twisted spindle of metaphase I with broad poles, while spindles of metaphase II also emanate from the four plastid clusters. Cytokinesis is completed through the centrifugal cell plate formation in telophase II. The division axes of two successive nuclear divisions appear to be determined by plastid-based QMS, and the future site of cytokinesis is marked by cytoplasmic furrows associated with GBM. The phylogenetic distribution of GBM and QMS suggests that the meiotic system involving these structures is an ancestral trait of liverworts. Long-term dormancy in diploid sporocytes rather than haploid spores may represent transitional traits from charophycean green algae to land plants.","PeriodicalId":93270,"journal":{"name":"Bryophyte diversity and evolution","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Microtubule organization and plastid distribution during meiosis of Haplomitrium mnioides (Haplomitriopsida)\",\"authors\":\"Masaki Shimamura\",\"doi\":\"10.11646/bde.45.1.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The organization of microtubules and plastid distribution of the liverwort, Haplomitrium mnioides (Haplomitriopsida), was studied during the meiotic phase lasting for six months. In the late fall, the cytoplasm of early sporocytes forms four lobes of future spore domains before meiotic prophase. Microtubules align at the cytoplasmic cleavage furrow regions as girdling bands in the four-lobed sporocytes. Finally, the cleavage furrows are proximal to the nucleus positioned in the center of the sporocyte, and the girdling bands of the microtubule (GBM) disappear. Subsequently, the nucleus moves into one of the cytoplasmic lobes, and sporocytes pass the winter season at this stage. In early spring, the nucleus returns to the central position of the lobed cytoplasm, concurrent with plastid repositioning around the nucleus. Plastids are then distributed equally to each of the four lobes as a plastid cluster. Astral microtubules emanate from the plastid cluster in each spore domain and encage prophase nuclei as a quadripolar microtubule system (QMS). The QMS changes into a twisted spindle of metaphase I with broad poles, while spindles of metaphase II also emanate from the four plastid clusters. Cytokinesis is completed through the centrifugal cell plate formation in telophase II. The division axes of two successive nuclear divisions appear to be determined by plastid-based QMS, and the future site of cytokinesis is marked by cytoplasmic furrows associated with GBM. The phylogenetic distribution of GBM and QMS suggests that the meiotic system involving these structures is an ancestral trait of liverworts. Long-term dormancy in diploid sporocytes rather than haploid spores may represent transitional traits from charophycean green algae to land plants.\",\"PeriodicalId\":93270,\"journal\":{\"name\":\"Bryophyte diversity and evolution\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bryophyte diversity and evolution\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11646/bde.45.1.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bryophyte diversity and evolution","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11646/bde.45.1.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在持续6个月的减数分裂期,研究了苔草(Haplomitrium mniopida)的微管组织和质体分布。在晚秋,早期孢子母细胞的细胞质在减数分裂前期形成未来孢子结构域的四个裂片。微管排列在细胞质裂解沟区域,作为四裂孢子母细胞中的环带。最后,卵裂沟位于位于孢子细胞中心的细胞核附近,微管(GBM)的环带消失。随后,细胞核进入其中一个细胞质裂片,孢子母细胞在这个阶段度过冬季。在早春,细胞核回到裂细胞质的中心位置,同时质体在细胞核周围重新定位。质体然后作为质体簇均匀分布在四个裂片中的每一个上。星形微管从每个孢子结构域的质体簇中发出,并包裹前期细胞核,形成四极微管系统(QMS)。QMS变为具有宽极的中期I的扭曲纺锤体,而中期II的纺锤体也来自四个质体簇。细胞分裂是通过在末期II中离心形成细胞板来完成的。两个连续核分裂的分裂轴似乎是由基于质体的QMS决定的,胞质分裂的未来位点是由与GBM相关的细胞质沟标记的。GBM和QMS的系统发育分布表明,包含这些结构的减数分裂系统是苔类的祖先特征。二倍体孢子母细胞而非单倍体孢子的长期休眠可能代表了从轮藻类绿藻到陆地植物的过渡特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microtubule organization and plastid distribution during meiosis of Haplomitrium mnioides (Haplomitriopsida)
The organization of microtubules and plastid distribution of the liverwort, Haplomitrium mnioides (Haplomitriopsida), was studied during the meiotic phase lasting for six months. In the late fall, the cytoplasm of early sporocytes forms four lobes of future spore domains before meiotic prophase. Microtubules align at the cytoplasmic cleavage furrow regions as girdling bands in the four-lobed sporocytes. Finally, the cleavage furrows are proximal to the nucleus positioned in the center of the sporocyte, and the girdling bands of the microtubule (GBM) disappear. Subsequently, the nucleus moves into one of the cytoplasmic lobes, and sporocytes pass the winter season at this stage. In early spring, the nucleus returns to the central position of the lobed cytoplasm, concurrent with plastid repositioning around the nucleus. Plastids are then distributed equally to each of the four lobes as a plastid cluster. Astral microtubules emanate from the plastid cluster in each spore domain and encage prophase nuclei as a quadripolar microtubule system (QMS). The QMS changes into a twisted spindle of metaphase I with broad poles, while spindles of metaphase II also emanate from the four plastid clusters. Cytokinesis is completed through the centrifugal cell plate formation in telophase II. The division axes of two successive nuclear divisions appear to be determined by plastid-based QMS, and the future site of cytokinesis is marked by cytoplasmic furrows associated with GBM. The phylogenetic distribution of GBM and QMS suggests that the meiotic system involving these structures is an ancestral trait of liverworts. Long-term dormancy in diploid sporocytes rather than haploid spores may represent transitional traits from charophycean green algae to land plants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The water absorption capacity of 21 Sphagnum species Special issue for Stephan Robbert Gradstein, commemorating his 80th birthday (Cover) Fissidens bassilae (Fissidentaceae, Musci), a new species from Africa Special issue for Stephan Robbert Gradstein, commemorating his 80th birthday (Table of Contents) In Celebration of Professor Stephan Robbert Gradstein
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1