基于时间卷积网络的在线评论建议挖掘

Usama Bin Rashidullah Khan, N. Akhtar, Umar Tahir Kidwai, Ghufran Alam Siddiqui
{"title":"基于时间卷积网络的在线评论建议挖掘","authors":"Usama Bin Rashidullah Khan, N. Akhtar, Umar Tahir Kidwai, Ghufran Alam Siddiqui","doi":"10.1080/09720529.2022.2133249","DOIUrl":null,"url":null,"abstract":"Abstract Business and brand owners are using social media networks to provide and deliver various services to their clients and collect information about their products from customers. Customers give their opinions as well as ideas for the improvement of the products on the review platforms and portals. Suggestion Mining is a technique of automatic extraction of these innovative ideas or suggestions from online source data. In this paper, we proposed TCN architecture for suggestion mining from online reviews. The TCN uses causal and dilated convolutional layers to process sequential or temporal data and captures long-term dependencies. TCN architecture on the dataset of SemEval-2019 subtask A is experimented. The dataset is highly imbalanced and to overcome this problem, the ensemble oversampling technique to balance the dataset is applied. TCN is also experimented with the attention mechanism. Our proposed model outperforms the existing works by achieving an F1 score of 82.0 %.","PeriodicalId":46563,"journal":{"name":"JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY","volume":"25 1","pages":"2101 - 2110"},"PeriodicalIF":1.2000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Suggestion mining from online reviews using temporal convolutional network\",\"authors\":\"Usama Bin Rashidullah Khan, N. Akhtar, Umar Tahir Kidwai, Ghufran Alam Siddiqui\",\"doi\":\"10.1080/09720529.2022.2133249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Business and brand owners are using social media networks to provide and deliver various services to their clients and collect information about their products from customers. Customers give their opinions as well as ideas for the improvement of the products on the review platforms and portals. Suggestion Mining is a technique of automatic extraction of these innovative ideas or suggestions from online source data. In this paper, we proposed TCN architecture for suggestion mining from online reviews. The TCN uses causal and dilated convolutional layers to process sequential or temporal data and captures long-term dependencies. TCN architecture on the dataset of SemEval-2019 subtask A is experimented. The dataset is highly imbalanced and to overcome this problem, the ensemble oversampling technique to balance the dataset is applied. TCN is also experimented with the attention mechanism. Our proposed model outperforms the existing works by achieving an F1 score of 82.0 %.\",\"PeriodicalId\":46563,\"journal\":{\"name\":\"JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY\",\"volume\":\"25 1\",\"pages\":\"2101 - 2110\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09720529.2022.2133249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09720529.2022.2133249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

企业和品牌所有者正在使用社交媒体网络向客户提供和交付各种服务,并从客户那里收集有关其产品的信息。顾客在点评平台和门户网站上给出了他们对产品的意见和改进的想法。建议挖掘是一种从在线源数据中自动提取这些创新想法或建议的技术。在本文中,我们提出了用于在线评论建议挖掘的TCN架构。TCN使用因果和扩展卷积层来处理顺序或时间数据,并捕获长期依赖关系。在SemEval-2019子任务A数据集上对TCN架构进行了实验。为了克服数据集高度不平衡的问题,采用了集成过采样技术来平衡数据集。TCN还对注意机制进行了实验。我们提出的模型优于现有的作品,达到82.0%的F1分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Suggestion mining from online reviews using temporal convolutional network
Abstract Business and brand owners are using social media networks to provide and deliver various services to their clients and collect information about their products from customers. Customers give their opinions as well as ideas for the improvement of the products on the review platforms and portals. Suggestion Mining is a technique of automatic extraction of these innovative ideas or suggestions from online source data. In this paper, we proposed TCN architecture for suggestion mining from online reviews. The TCN uses causal and dilated convolutional layers to process sequential or temporal data and captures long-term dependencies. TCN architecture on the dataset of SemEval-2019 subtask A is experimented. The dataset is highly imbalanced and to overcome this problem, the ensemble oversampling technique to balance the dataset is applied. TCN is also experimented with the attention mechanism. Our proposed model outperforms the existing works by achieving an F1 score of 82.0 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
21.40%
发文量
126
期刊最新文献
A4-graph for the twisted group 3D4 (3) Modern Metrics (MM): Software size estimation using function points for artificial intelligence and data analytics applications and finding the effort modifiers of the functional units using indian software industry Optimized deep learning methodology for intruder behavior detection and classification in cloud I-prime fuzzy submodules Information security based on sub-system keys generator by utilizing polynomials method and logic gate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1