Walid Mnasri, Lotfi Bentahar, Sophie Nowak, Olivier Sandre, Michel Boissière, Souad Ammar
{"title":"多元醇制备的Gd3+取代的Co0.6Zn0.4Fe2O4纳米颗粒作为高磁化MRI阴性造影剂的评价","authors":"Walid Mnasri, Lotfi Bentahar, Sophie Nowak, Olivier Sandre, Michel Boissière, Souad Ammar","doi":"10.1002/jin2.53","DOIUrl":null,"url":null,"abstract":"<p>The structural, microstructural, and magnetic properties of ~5-nm-sized Co<sub>0.6</sub>Zn<sub>0.4</sub>Fe<sub>2 − <i>x</i></sub>Gd<sub><i>x</i></sub>O<sub>4</sub> nanoparticles were investigated in order to evaluate their capability to enhance the magnetic resonance imaging contrast as high magnetization agents. A focus was made on the solubility of Gd<sup>3+</sup> cations within the spinel lattice. By coupling X-ray diffraction to X-ray fluorescence spectroscopy, we demonstrated that only a limited fraction of Gd<sup>3+</sup> can substitute Fe<sup>3+</sup> ions into the whole crystal structure and does not exceed 6 at.-%. At this concentration, the room temperature (27°C) saturation magnetizations of the prepared superparamagnetic nanocrystals were found to be close to 80 emu g<sup>−1</sup>. Coating these nanoparticles with hydrophilic dopamine ligands leads to the formation of ~50-nm-sized clusters in water. As a consequence, relatively high <i>r</i><sub>2</sub>/<i>r</i><sub>1</sub> ratios of transverse to longitudinal proton relaxivities and high <i>r</i><sub>2</sub> values were measured in the resulting colloids at physiological temperature (37°C) for an applied magnetic field of 1.41 T: 33 and 188 mM<sup>−1</sup> sec<sup>−1</sup>, respectively, for the richest system in gadolinium. Moreover, after incubation with healthy human model cells (fibroblasts) at doses as high as 10 μg mL<sup>−1</sup>, they induce neither cellular death nor acute cellular damage making the engineered probes particularly valuable for negative magnetic resonance imaging contrasting.</p>","PeriodicalId":91547,"journal":{"name":"Journal of interdisciplinary nanomedicine","volume":"4 1","pages":"4-23"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/jin2.53","citationCount":"3","resultStr":"{\"title\":\"Evaluation of polyol-made Gd3+-substituted Co0.6Zn0.4Fe2O4 nanoparticles as high magnetization MRI negative contrast agents\",\"authors\":\"Walid Mnasri, Lotfi Bentahar, Sophie Nowak, Olivier Sandre, Michel Boissière, Souad Ammar\",\"doi\":\"10.1002/jin2.53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The structural, microstructural, and magnetic properties of ~5-nm-sized Co<sub>0.6</sub>Zn<sub>0.4</sub>Fe<sub>2 − <i>x</i></sub>Gd<sub><i>x</i></sub>O<sub>4</sub> nanoparticles were investigated in order to evaluate their capability to enhance the magnetic resonance imaging contrast as high magnetization agents. A focus was made on the solubility of Gd<sup>3+</sup> cations within the spinel lattice. By coupling X-ray diffraction to X-ray fluorescence spectroscopy, we demonstrated that only a limited fraction of Gd<sup>3+</sup> can substitute Fe<sup>3+</sup> ions into the whole crystal structure and does not exceed 6 at.-%. At this concentration, the room temperature (27°C) saturation magnetizations of the prepared superparamagnetic nanocrystals were found to be close to 80 emu g<sup>−1</sup>. Coating these nanoparticles with hydrophilic dopamine ligands leads to the formation of ~50-nm-sized clusters in water. As a consequence, relatively high <i>r</i><sub>2</sub>/<i>r</i><sub>1</sub> ratios of transverse to longitudinal proton relaxivities and high <i>r</i><sub>2</sub> values were measured in the resulting colloids at physiological temperature (37°C) for an applied magnetic field of 1.41 T: 33 and 188 mM<sup>−1</sup> sec<sup>−1</sup>, respectively, for the richest system in gadolinium. Moreover, after incubation with healthy human model cells (fibroblasts) at doses as high as 10 μg mL<sup>−1</sup>, they induce neither cellular death nor acute cellular damage making the engineered probes particularly valuable for negative magnetic resonance imaging contrasting.</p>\",\"PeriodicalId\":91547,\"journal\":{\"name\":\"Journal of interdisciplinary nanomedicine\",\"volume\":\"4 1\",\"pages\":\"4-23\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/jin2.53\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of interdisciplinary nanomedicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jin2.53\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of interdisciplinary nanomedicine","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jin2.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluation of polyol-made Gd3+-substituted Co0.6Zn0.4Fe2O4 nanoparticles as high magnetization MRI negative contrast agents
The structural, microstructural, and magnetic properties of ~5-nm-sized Co0.6Zn0.4Fe2 − xGdxO4 nanoparticles were investigated in order to evaluate their capability to enhance the magnetic resonance imaging contrast as high magnetization agents. A focus was made on the solubility of Gd3+ cations within the spinel lattice. By coupling X-ray diffraction to X-ray fluorescence spectroscopy, we demonstrated that only a limited fraction of Gd3+ can substitute Fe3+ ions into the whole crystal structure and does not exceed 6 at.-%. At this concentration, the room temperature (27°C) saturation magnetizations of the prepared superparamagnetic nanocrystals were found to be close to 80 emu g−1. Coating these nanoparticles with hydrophilic dopamine ligands leads to the formation of ~50-nm-sized clusters in water. As a consequence, relatively high r2/r1 ratios of transverse to longitudinal proton relaxivities and high r2 values were measured in the resulting colloids at physiological temperature (37°C) for an applied magnetic field of 1.41 T: 33 and 188 mM−1 sec−1, respectively, for the richest system in gadolinium. Moreover, after incubation with healthy human model cells (fibroblasts) at doses as high as 10 μg mL−1, they induce neither cellular death nor acute cellular damage making the engineered probes particularly valuable for negative magnetic resonance imaging contrasting.