多元醇制备的Gd3+取代的Co0.6Zn0.4Fe2O4纳米颗粒作为高磁化MRI阴性造影剂的评价

Walid Mnasri, Lotfi Bentahar, Sophie Nowak, Olivier Sandre, Michel Boissière, Souad Ammar
{"title":"多元醇制备的Gd3+取代的Co0.6Zn0.4Fe2O4纳米颗粒作为高磁化MRI阴性造影剂的评价","authors":"Walid Mnasri,&nbsp;Lotfi Bentahar,&nbsp;Sophie Nowak,&nbsp;Olivier Sandre,&nbsp;Michel Boissière,&nbsp;Souad Ammar","doi":"10.1002/jin2.53","DOIUrl":null,"url":null,"abstract":"<p>The structural, microstructural, and magnetic properties of ~5-nm-sized Co<sub>0.6</sub>Zn<sub>0.4</sub>Fe<sub>2 − <i>x</i></sub>Gd<sub><i>x</i></sub>O<sub>4</sub> nanoparticles were investigated in order to evaluate their capability to enhance the magnetic resonance imaging contrast as high magnetization agents. A focus was made on the solubility of Gd<sup>3+</sup> cations within the spinel lattice. By coupling X-ray diffraction to X-ray fluorescence spectroscopy, we demonstrated that only a limited fraction of Gd<sup>3+</sup> can substitute Fe<sup>3+</sup> ions into the whole crystal structure and does not exceed 6 at.-%. At this concentration, the room temperature (27°C) saturation magnetizations of the prepared superparamagnetic nanocrystals were found to be close to 80 emu g<sup>−1</sup>. Coating these nanoparticles with hydrophilic dopamine ligands leads to the formation of ~50-nm-sized clusters in water. As a consequence, relatively high <i>r</i><sub>2</sub>/<i>r</i><sub>1</sub> ratios of transverse to longitudinal proton relaxivities and high <i>r</i><sub>2</sub> values were measured in the resulting colloids at physiological temperature (37°C) for an applied magnetic field of 1.41 T: 33 and 188 mM<sup>−1</sup> sec<sup>−1</sup>, respectively, for the richest system in gadolinium. Moreover, after incubation with healthy human model cells (fibroblasts) at doses as high as 10 μg mL<sup>−1</sup>, they induce neither cellular death nor acute cellular damage making the engineered probes particularly valuable for negative magnetic resonance imaging contrasting.</p>","PeriodicalId":91547,"journal":{"name":"Journal of interdisciplinary nanomedicine","volume":"4 1","pages":"4-23"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/jin2.53","citationCount":"3","resultStr":"{\"title\":\"Evaluation of polyol-made Gd3+-substituted Co0.6Zn0.4Fe2O4 nanoparticles as high magnetization MRI negative contrast agents\",\"authors\":\"Walid Mnasri,&nbsp;Lotfi Bentahar,&nbsp;Sophie Nowak,&nbsp;Olivier Sandre,&nbsp;Michel Boissière,&nbsp;Souad Ammar\",\"doi\":\"10.1002/jin2.53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The structural, microstructural, and magnetic properties of ~5-nm-sized Co<sub>0.6</sub>Zn<sub>0.4</sub>Fe<sub>2 − <i>x</i></sub>Gd<sub><i>x</i></sub>O<sub>4</sub> nanoparticles were investigated in order to evaluate their capability to enhance the magnetic resonance imaging contrast as high magnetization agents. A focus was made on the solubility of Gd<sup>3+</sup> cations within the spinel lattice. By coupling X-ray diffraction to X-ray fluorescence spectroscopy, we demonstrated that only a limited fraction of Gd<sup>3+</sup> can substitute Fe<sup>3+</sup> ions into the whole crystal structure and does not exceed 6 at.-%. At this concentration, the room temperature (27°C) saturation magnetizations of the prepared superparamagnetic nanocrystals were found to be close to 80 emu g<sup>−1</sup>. Coating these nanoparticles with hydrophilic dopamine ligands leads to the formation of ~50-nm-sized clusters in water. As a consequence, relatively high <i>r</i><sub>2</sub>/<i>r</i><sub>1</sub> ratios of transverse to longitudinal proton relaxivities and high <i>r</i><sub>2</sub> values were measured in the resulting colloids at physiological temperature (37°C) for an applied magnetic field of 1.41 T: 33 and 188 mM<sup>−1</sup> sec<sup>−1</sup>, respectively, for the richest system in gadolinium. Moreover, after incubation with healthy human model cells (fibroblasts) at doses as high as 10 μg mL<sup>−1</sup>, they induce neither cellular death nor acute cellular damage making the engineered probes particularly valuable for negative magnetic resonance imaging contrasting.</p>\",\"PeriodicalId\":91547,\"journal\":{\"name\":\"Journal of interdisciplinary nanomedicine\",\"volume\":\"4 1\",\"pages\":\"4-23\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/jin2.53\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of interdisciplinary nanomedicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jin2.53\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of interdisciplinary nanomedicine","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jin2.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

研究了~5 nm尺寸的Co0.6Zn0.4Fe2−xGdxO4纳米粒子的结构、微观结构和磁性能,以评价其作为高磁化剂增强磁共振成像对比度的能力。重点研究了尖晶石晶格中Gd3+阳离子的溶解度。通过X射线衍射与X射线荧光光谱的耦合,我们证明了只有有限部分的Gd3+可以取代Fe3+离子进入整个晶体结构,并且不超过6%。在此浓度下,制备的超顺磁纳米晶体的室温(27℃)饱和磁化强度接近80 emu g−1。用亲水性多巴胺配体包覆这些纳米颗粒,可在水中形成~50 nm大小的团簇。因此,在生理温度(37°C)下,在1.41 T: 33和188 mM−1 sec−1的磁场下,所得到的胶体中测量到相对较高的横向和纵向质子弛豫率r2/r1比和高r2值。此外,在与健康人类模型细胞(成纤维细胞)以高达10 μg mL−1的剂量孵卵后,它们既不会引起细胞死亡,也不会引起急性细胞损伤,这使得工程探针在负核磁共振成像对比中特别有价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of polyol-made Gd3+-substituted Co0.6Zn0.4Fe2O4 nanoparticles as high magnetization MRI negative contrast agents

The structural, microstructural, and magnetic properties of ~5-nm-sized Co0.6Zn0.4Fe2 − xGdxO4 nanoparticles were investigated in order to evaluate their capability to enhance the magnetic resonance imaging contrast as high magnetization agents. A focus was made on the solubility of Gd3+ cations within the spinel lattice. By coupling X-ray diffraction to X-ray fluorescence spectroscopy, we demonstrated that only a limited fraction of Gd3+ can substitute Fe3+ ions into the whole crystal structure and does not exceed 6 at.-%. At this concentration, the room temperature (27°C) saturation magnetizations of the prepared superparamagnetic nanocrystals were found to be close to 80 emu g−1. Coating these nanoparticles with hydrophilic dopamine ligands leads to the formation of ~50-nm-sized clusters in water. As a consequence, relatively high r2/r1 ratios of transverse to longitudinal proton relaxivities and high r2 values were measured in the resulting colloids at physiological temperature (37°C) for an applied magnetic field of 1.41 T: 33 and 188 mM−1 sec−1, respectively, for the richest system in gadolinium. Moreover, after incubation with healthy human model cells (fibroblasts) at doses as high as 10 μg mL−1, they induce neither cellular death nor acute cellular damage making the engineered probes particularly valuable for negative magnetic resonance imaging contrasting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Functional recovery of natural killer cell activity by nanoparticle-mediated delivery of transforming growth factor beta 2 small interfering RNA Issue Information One-pot microwave-assisted synthesis of size-dependent l-glutathione-capped spherical silver nanoparticles suitable for materials with antibacterial properties Nanomedicines towards targeting intracellular Mtb for the treatment of tuberculosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1