Ni50Mn28Ga22熔喷薄带的磁热性能

IF 1.2 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Philosophical Magazine Letters Pub Date : 2021-08-11 DOI:10.1080/09500839.2021.1962015
D. K. Satapathy, I. Al-Omari, S. Aich
{"title":"Ni50Mn28Ga22熔喷薄带的磁热性能","authors":"D. K. Satapathy, I. Al-Omari, S. Aich","doi":"10.1080/09500839.2021.1962015","DOIUrl":null,"url":null,"abstract":"ABSTRACT\n NiMnGa-based Heusler alloys are known for their shape-memory effect. However, in this study, the focus will be on the magneto-thermal (magnetocaloric) properties of rapidly solidified Ni50Mn28Ga22 ribbons melt spun at 1300 and 1600 RPM as well as annealed bulk specimens. The ribbons, both as-spun and annealed, and the annealed bulk specimens were tested in a SQUID to determine the magnetic properties at a field of 50 kOe with a temperature step of 3 K in the temperature range 355–385 K. The magnetic data from the isotherms were used to achieve Arrott plots. Second-order transitions were observed in the materials at the TC temperature. The values of magnetic entropy ΔSm were calculated from the magnetic data and these were further used to calculate the values of refrigeration capacity RC. The highest RC value of 273 J/kg was obtained for 1300NMG5 800 where 1300, 800 and 5, represent the melt spinning rate in RPM, the annealing temperature in Celsius and the duration of annealing in hours, respectively. The values of ΔSm were similar for all the ribbons. To confirm the order of the magnetic transition, universal curves were plotted which led to the conclusion that the transformation at the Curie temperature is a second-order ferromagnetic to paramagnetic transition.","PeriodicalId":19860,"journal":{"name":"Philosophical Magazine Letters","volume":"102 1","pages":"1 - 14"},"PeriodicalIF":1.2000,"publicationDate":"2021-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Magnetocaloric properties of Ni50Mn28Ga22 melt-spun ribbons\",\"authors\":\"D. K. Satapathy, I. Al-Omari, S. Aich\",\"doi\":\"10.1080/09500839.2021.1962015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT\\n NiMnGa-based Heusler alloys are known for their shape-memory effect. However, in this study, the focus will be on the magneto-thermal (magnetocaloric) properties of rapidly solidified Ni50Mn28Ga22 ribbons melt spun at 1300 and 1600 RPM as well as annealed bulk specimens. The ribbons, both as-spun and annealed, and the annealed bulk specimens were tested in a SQUID to determine the magnetic properties at a field of 50 kOe with a temperature step of 3 K in the temperature range 355–385 K. The magnetic data from the isotherms were used to achieve Arrott plots. Second-order transitions were observed in the materials at the TC temperature. The values of magnetic entropy ΔSm were calculated from the magnetic data and these were further used to calculate the values of refrigeration capacity RC. The highest RC value of 273 J/kg was obtained for 1300NMG5 800 where 1300, 800 and 5, represent the melt spinning rate in RPM, the annealing temperature in Celsius and the duration of annealing in hours, respectively. The values of ΔSm were similar for all the ribbons. To confirm the order of the magnetic transition, universal curves were plotted which led to the conclusion that the transformation at the Curie temperature is a second-order ferromagnetic to paramagnetic transition.\",\"PeriodicalId\":19860,\"journal\":{\"name\":\"Philosophical Magazine Letters\",\"volume\":\"102 1\",\"pages\":\"1 - 14\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Magazine Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/09500839.2021.1962015\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Magazine Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09500839.2021.1962015","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

NiMnGa基Heusler合金以其形状记忆效应而闻名。然而,在本研究中,重点将放在以1300和1600 RPM熔融纺丝的快速凝固Ni50Mn28Ga22带材以及退火大块试样的磁热(磁热)特性上。在SQUID中测试了旋转和退火的带状物以及退火的大块试样,以确定在355–385 K温度范围内,在50 kOe的场和3 K的温度步长下的磁性能。等温线的磁性数据用于获得Arrott图。在TC温度下,在材料中观察到二阶跃迁。根据磁数据计算磁熵ΔSm的值,并将其进一步用于计算制冷量RC的值。对于1300NMG5 800获得了273J/kg的最高RC值,其中1300、800和5分别表示以RPM为单位的熔体纺丝速率、以摄氏度为单位的退火温度和以小时为单位的回火持续时间。ΔSm的值对于所有带是相似的。为了证实磁性转变的顺序,绘制了普遍曲线,得出了在居里温度下的转变是二阶铁磁到顺磁的转变的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Magnetocaloric properties of Ni50Mn28Ga22 melt-spun ribbons
ABSTRACT NiMnGa-based Heusler alloys are known for their shape-memory effect. However, in this study, the focus will be on the magneto-thermal (magnetocaloric) properties of rapidly solidified Ni50Mn28Ga22 ribbons melt spun at 1300 and 1600 RPM as well as annealed bulk specimens. The ribbons, both as-spun and annealed, and the annealed bulk specimens were tested in a SQUID to determine the magnetic properties at a field of 50 kOe with a temperature step of 3 K in the temperature range 355–385 K. The magnetic data from the isotherms were used to achieve Arrott plots. Second-order transitions were observed in the materials at the TC temperature. The values of magnetic entropy ΔSm were calculated from the magnetic data and these were further used to calculate the values of refrigeration capacity RC. The highest RC value of 273 J/kg was obtained for 1300NMG5 800 where 1300, 800 and 5, represent the melt spinning rate in RPM, the annealing temperature in Celsius and the duration of annealing in hours, respectively. The values of ΔSm were similar for all the ribbons. To confirm the order of the magnetic transition, universal curves were plotted which led to the conclusion that the transformation at the Curie temperature is a second-order ferromagnetic to paramagnetic transition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Philosophical Magazine Letters
Philosophical Magazine Letters 物理-物理:凝聚态物理
CiteScore
2.60
自引率
0.00%
发文量
25
审稿时长
2.7 months
期刊介绍: Philosophical Magazine Letters is the rapid communications part of the highly respected Philosophical Magazine, which was first published in 1798. Its Editors consider for publication short and timely contributions in the field of condensed matter describing original results, theories and concepts relating to the structure and properties of crystalline materials, ceramics, polymers, glasses, amorphous films, composites and soft matter. Articles emphasizing experimental, theoretical and modelling studies on solids, especially those that interpret behaviour on a microscopic, atomic or electronic scale, are particularly appropriate. Manuscripts are considered on the strict condition that they have been submitted only to Philosophical Magazine Letters , that they have not been published already, and that they are not under consideration for publication elsewhere.
期刊最新文献
Martensitic transformation of reversed austenite in a low-carbon 7Ni steel Machine-learning-assisted analysis of highly transient X-ray imaging sequences of weld pools Assessment of Bayesian guidance strategy to develop bake-hardening ferritic steel Perspective on descriptors of mechanical behaviour of cubic transition-metal carbides and nitrides Design of carbide free bainitic steels for hot rolling practices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1