非参数MCMC Gibbs采样方法及相关统计方法中单倍型频率估计的误分类评估

G. Ken-Dror, Pankaj Sharma
{"title":"非参数MCMC Gibbs采样方法及相关统计方法中单倍型频率估计的误分类评估","authors":"G. Ken-Dror, Pankaj Sharma","doi":"10.18502/jbe.v8i3.12304","DOIUrl":null,"url":null,"abstract":"Introduction: Haplotype analysis allows higher resolution analysis in genetic association studies and is used as a reference panel for genotype imputation in genome-wide association studies. Haplotypes estimates from genotypes among unrelated individuals but misclassification of the haplotype reconstruction will directly affect the accuracy of the results. \nMethods: This study proposes a novel statistical method Gibbs sampler algorithm to estimate haplotype frequency and quantify the influence of misclassification bias of the estimate haplotype. The performance of the algorithm is evaluated on simulated datasets assuming that linkage phase unknown. The simulation used different minor allele frequencies at each single nucleotide polymorphism (SNP) and different linkagedisequilibrium between the SNPs. \nResults: The Gibbs sampler algorithm presents higher accuracy among over seven SNPs or less, validated, and deals with missing genotype compared to previous related statistical approaches. Misclassification of estimated haplotypes leads to non-differential bias in exposure and affects haplotype estimates in haplotype analysis. The observed odds ratio underestimates the association between haplotype and phenotype by 36% to 99%. \nConclusion: The Gibbs sampler algorithm provides higher accuracy and robust effectiveness performance, handles missing genotypes and provides uncertain probabilities of haplotype frequencies. The misclassification bias of the estimate haplotype underestimates the genetic association by more than forty percent.","PeriodicalId":34310,"journal":{"name":"Journal of Biostatistics and Epidemiology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-Parametric MCMC Gibbs Sampler Approach and Misclassification Assessment of Estimating Haplotype Frequencies among Related Statistical Approaches\",\"authors\":\"G. Ken-Dror, Pankaj Sharma\",\"doi\":\"10.18502/jbe.v8i3.12304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: Haplotype analysis allows higher resolution analysis in genetic association studies and is used as a reference panel for genotype imputation in genome-wide association studies. Haplotypes estimates from genotypes among unrelated individuals but misclassification of the haplotype reconstruction will directly affect the accuracy of the results. \\nMethods: This study proposes a novel statistical method Gibbs sampler algorithm to estimate haplotype frequency and quantify the influence of misclassification bias of the estimate haplotype. The performance of the algorithm is evaluated on simulated datasets assuming that linkage phase unknown. The simulation used different minor allele frequencies at each single nucleotide polymorphism (SNP) and different linkagedisequilibrium between the SNPs. \\nResults: The Gibbs sampler algorithm presents higher accuracy among over seven SNPs or less, validated, and deals with missing genotype compared to previous related statistical approaches. Misclassification of estimated haplotypes leads to non-differential bias in exposure and affects haplotype estimates in haplotype analysis. The observed odds ratio underestimates the association between haplotype and phenotype by 36% to 99%. \\nConclusion: The Gibbs sampler algorithm provides higher accuracy and robust effectiveness performance, handles missing genotypes and provides uncertain probabilities of haplotype frequencies. The misclassification bias of the estimate haplotype underestimates the genetic association by more than forty percent.\",\"PeriodicalId\":34310,\"journal\":{\"name\":\"Journal of Biostatistics and Epidemiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biostatistics and Epidemiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18502/jbe.v8i3.12304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biostatistics and Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18502/jbe.v8i3.12304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

简介:单倍型分析允许在遗传关联研究中进行更高分辨率的分析,并在全基因组关联研究中用作基因型插补的参考小组。根据不相关个体的基因型估计单倍型,但单倍型重建的错误分类将直接影响结果的准确性。方法:本研究提出了一种新的统计方法Gibbs采样器算法来估计单倍型频率,并量化估计单倍类型的错误分类偏差的影响。假设链接相位未知,在模拟数据集上评估算法的性能。该模拟使用了每个单核苷酸多态性(SNP)的不同次要等位基因频率和SNP之间的不同连锁不平衡。结果:与以前的相关统计方法相比,吉布斯采样器算法在超过7个或更少的SNPs中表现出更高的准确性,并得到了验证,并处理了缺失的基因型。估计单倍型的错误分类导致暴露的非差异性偏差,并影响单倍型分析中的单倍型估计。观察到的比值比低估了单倍型和表型之间的相关性36%至99%。结论:吉布斯采样器算法提供了更高的准确性和稳健的有效性性能,处理了缺失的基因型,并提供了单倍型频率的不确定概率。估计单倍型的错误分类偏差低估了遗传关联40%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Non-Parametric MCMC Gibbs Sampler Approach and Misclassification Assessment of Estimating Haplotype Frequencies among Related Statistical Approaches
Introduction: Haplotype analysis allows higher resolution analysis in genetic association studies and is used as a reference panel for genotype imputation in genome-wide association studies. Haplotypes estimates from genotypes among unrelated individuals but misclassification of the haplotype reconstruction will directly affect the accuracy of the results. Methods: This study proposes a novel statistical method Gibbs sampler algorithm to estimate haplotype frequency and quantify the influence of misclassification bias of the estimate haplotype. The performance of the algorithm is evaluated on simulated datasets assuming that linkage phase unknown. The simulation used different minor allele frequencies at each single nucleotide polymorphism (SNP) and different linkagedisequilibrium between the SNPs. Results: The Gibbs sampler algorithm presents higher accuracy among over seven SNPs or less, validated, and deals with missing genotype compared to previous related statistical approaches. Misclassification of estimated haplotypes leads to non-differential bias in exposure and affects haplotype estimates in haplotype analysis. The observed odds ratio underestimates the association between haplotype and phenotype by 36% to 99%. Conclusion: The Gibbs sampler algorithm provides higher accuracy and robust effectiveness performance, handles missing genotypes and provides uncertain probabilities of haplotype frequencies. The misclassification bias of the estimate haplotype underestimates the genetic association by more than forty percent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
26
审稿时长
12 weeks
期刊最新文献
Analysis of Copula Frailty defective models in presence of Cure Fraction The Pattern of Motorcyclists' Death Due to Accidents and a Three-year Forecast in East Azerbaijan Province, Iran: A Time Series Study Factors Affecting Loneliness in Older Adults: Evidence from Ardakan Cohort Study on Aging (ACSA) Understanding Knowledge and Behaviors Related To the Covid-19 Epidemic in Medical Students in Morocco Survival Prognostic Factors of Male Breast Cancer Using Appropriate Survival Analysis for Small Sample Size: Three Center Experience
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1