{"title":"具有3D打印蜂窝芯和铝面板的夹芯板在准静态载荷下的弯曲行为","authors":"S. Chahardoli","doi":"10.1177/10996362221127965","DOIUrl":null,"url":null,"abstract":"In this study, sandwich panels are presented with polylactic acid (PLA) core made through the FDM method. The face sheets of the panels are made out of aluminum 3105 alloy. The mechanical properties of the proposed samples were investigated under flexural quasi-static load. Different panels were tested by a three-point flexural test to determine their collapse properties; moreover, cubic specimens were exposed to quasi-static compression load. The results confirmed the effective role of layering type in the FDM method on the collapse properties of the sandwich panel. Results showed that type of the main pattern extension can affect the collapse properties. A comparison of the cubic samples under three different quasi-static compressive loading indicated that the collapse properties and absorbed energy of the samples depend on the loading direction. The proposed lightweight structures absorb high energy in comparison with ordinary one which was investigated in this paper; thus they can be an ideal structure for industries. Numerical modeling was another part of the study which was done by LS-DYNA and good agreement between numerical and experimental results was observed.","PeriodicalId":17215,"journal":{"name":"Journal of Sandwich Structures & Materials","volume":"25 1","pages":"232 - 250"},"PeriodicalIF":3.5000,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Flexural behavior of sandwich panels with 3D printed cellular cores and aluminum face sheets under quasi-static loading\",\"authors\":\"S. Chahardoli\",\"doi\":\"10.1177/10996362221127965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, sandwich panels are presented with polylactic acid (PLA) core made through the FDM method. The face sheets of the panels are made out of aluminum 3105 alloy. The mechanical properties of the proposed samples were investigated under flexural quasi-static load. Different panels were tested by a three-point flexural test to determine their collapse properties; moreover, cubic specimens were exposed to quasi-static compression load. The results confirmed the effective role of layering type in the FDM method on the collapse properties of the sandwich panel. Results showed that type of the main pattern extension can affect the collapse properties. A comparison of the cubic samples under three different quasi-static compressive loading indicated that the collapse properties and absorbed energy of the samples depend on the loading direction. The proposed lightweight structures absorb high energy in comparison with ordinary one which was investigated in this paper; thus they can be an ideal structure for industries. Numerical modeling was another part of the study which was done by LS-DYNA and good agreement between numerical and experimental results was observed.\",\"PeriodicalId\":17215,\"journal\":{\"name\":\"Journal of Sandwich Structures & Materials\",\"volume\":\"25 1\",\"pages\":\"232 - 250\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2022-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sandwich Structures & Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/10996362221127965\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sandwich Structures & Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/10996362221127965","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Flexural behavior of sandwich panels with 3D printed cellular cores and aluminum face sheets under quasi-static loading
In this study, sandwich panels are presented with polylactic acid (PLA) core made through the FDM method. The face sheets of the panels are made out of aluminum 3105 alloy. The mechanical properties of the proposed samples were investigated under flexural quasi-static load. Different panels were tested by a three-point flexural test to determine their collapse properties; moreover, cubic specimens were exposed to quasi-static compression load. The results confirmed the effective role of layering type in the FDM method on the collapse properties of the sandwich panel. Results showed that type of the main pattern extension can affect the collapse properties. A comparison of the cubic samples under three different quasi-static compressive loading indicated that the collapse properties and absorbed energy of the samples depend on the loading direction. The proposed lightweight structures absorb high energy in comparison with ordinary one which was investigated in this paper; thus they can be an ideal structure for industries. Numerical modeling was another part of the study which was done by LS-DYNA and good agreement between numerical and experimental results was observed.
期刊介绍:
The Journal of Sandwich Structures and Materials is an international peer reviewed journal that provides a means of communication to fellow engineers and scientists by providing an archival record of developments in the science, technology, and professional practices of sandwich construction throughout the world. This journal is a member of the Committee on Publication Ethics (COPE).