基于人工神经网络的新冠肺炎肺部CT扫描图像识别模型设计

Maulana Akbar Dwijaya, Umar Ali Ahmad, Rudi Purwo Wijayanto, Ratna Astuti Nugrahaeni
{"title":"基于人工神经网络的新冠肺炎肺部CT扫描图像识别模型设计","authors":"Maulana Akbar Dwijaya, Umar Ali Ahmad, Rudi Purwo Wijayanto, Ratna Astuti Nugrahaeni","doi":"10.25077/jnte.v11n1.984.2022","DOIUrl":null,"url":null,"abstract":"COVID-19 has become a pandemic and is a big problem that needs to be checked out immediately. CT scan images can explain the lung conditions of COVID-19 patients and have the potential to be a clinical diagnostic tool. In this research, we classify COVID-19 by recognizing images on a computer tomography scan (CT scan) of the lungs using digital image processing and GLCM feature extraction techniques to obtain grayscale level values in CT images, followed by the creation of an artificial neural network model. So that the model can classify CT scan images, the results in this research obtained the most optimal model for COVID-19 classification performance with 90% accuracy, 88% precision, 91% recall, and 90% F1 score. This research can be a useful tool for clinical practitioners and radiologists to assist them in the diagnosis, quantification, and follow-up of COVID-19 cases.","PeriodicalId":30660,"journal":{"name":"Jurnal Nasional Teknik Elektro","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Model Design of The Image Recognition of Lung CT Scan for COVID-19 Detection Using Artificial Neural Network\",\"authors\":\"Maulana Akbar Dwijaya, Umar Ali Ahmad, Rudi Purwo Wijayanto, Ratna Astuti Nugrahaeni\",\"doi\":\"10.25077/jnte.v11n1.984.2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"COVID-19 has become a pandemic and is a big problem that needs to be checked out immediately. CT scan images can explain the lung conditions of COVID-19 patients and have the potential to be a clinical diagnostic tool. In this research, we classify COVID-19 by recognizing images on a computer tomography scan (CT scan) of the lungs using digital image processing and GLCM feature extraction techniques to obtain grayscale level values in CT images, followed by the creation of an artificial neural network model. So that the model can classify CT scan images, the results in this research obtained the most optimal model for COVID-19 classification performance with 90% accuracy, 88% precision, 91% recall, and 90% F1 score. This research can be a useful tool for clinical practitioners and radiologists to assist them in the diagnosis, quantification, and follow-up of COVID-19 cases.\",\"PeriodicalId\":30660,\"journal\":{\"name\":\"Jurnal Nasional Teknik Elektro\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Nasional Teknik Elektro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25077/jnte.v11n1.984.2022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Nasional Teknik Elektro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25077/jnte.v11n1.984.2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

新冠肺炎已经成为一种流行病,是一个需要立即检查的大问题。CT扫描图像可以解释新冠肺炎患者的肺部状况,并有可能成为临床诊断工具。在这项研究中,我们通过使用数字图像处理和GLCM特征提取技术识别肺部计算机断层扫描(CT扫描)上的图像来对新冠肺炎进行分类,以获得CT图像中的灰度级值,然后创建人工神经网络模型。为了使模型能够对CT扫描图像进行分类,本研究的结果获得了新冠肺炎分类性能最佳的模型,准确率为90%,准确度为88%,召回率为91%,F1得分为90%。这项研究可以成为临床从业者和放射科医生的有用工具,帮助他们诊断、量化和跟踪新冠肺炎病例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Model Design of The Image Recognition of Lung CT Scan for COVID-19 Detection Using Artificial Neural Network
COVID-19 has become a pandemic and is a big problem that needs to be checked out immediately. CT scan images can explain the lung conditions of COVID-19 patients and have the potential to be a clinical diagnostic tool. In this research, we classify COVID-19 by recognizing images on a computer tomography scan (CT scan) of the lungs using digital image processing and GLCM feature extraction techniques to obtain grayscale level values in CT images, followed by the creation of an artificial neural network model. So that the model can classify CT scan images, the results in this research obtained the most optimal model for COVID-19 classification performance with 90% accuracy, 88% precision, 91% recall, and 90% F1 score. This research can be a useful tool for clinical practitioners and radiologists to assist them in the diagnosis, quantification, and follow-up of COVID-19 cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
20
期刊最新文献
Development of DC Motor Speed Control Using PID Based on Arduino and Matlab For Laboratory Trainer IoT-Based Disaster Response Robot for Victim Identification in Building Collapses Techno-Economic Analysis for Raja Ampat Off-Grid System Comparative Analysis of Two-Stage and Single-Stage Models in Batteryless PV Systems for Motor Power Supply Enhanced Identification of Valvular Heart Diseases through Selective Phonocardiogram Features Driven by Convolutional Neural Networks (SFD-CNN)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1