{"title":"原木质量无损评价的创新方法","authors":"Vojtěch Ondrejka, T. Gergeľ, T. Bucha, M. Pástor","doi":"10.2478/forj-2020-0021","DOIUrl":null,"url":null,"abstract":"Abstract For the sustainability of an important renewable resource, such as wood, it is important to significantly increase the efficiency of its processing. A large part of this raw material ends up in the wood processing industry, where it is used for the production of pulp, paper, construction and furniture timber, floors and others. Therefore, it is very important to gain the knowledge needed for optimal valuation of raw wood material, through quality detection and classification into quality classes. There are many defectoscopic methods working on different physical principles. The most familiar of these methods are semi-destructive and non-destructive, as they do not cause damage to the tree or wood during assessment. The aim of this article is to describe, assess and compare known semi-destructive and non-destructive methods for the assessment of wood properties. This article describes basic visual inspection, basic semi-destructive methods (Pilodyn, Resistograph) and advanced semi-destructive methods (SilviScan®, DiscBot®) as well. Non-destructive methods use mostly acoustic wave motion (acoustic, ultrasonic), high-frequency waves (using georadar, microwave) and methods based on visual evaluation (image, laser). At last, there are X–ray methods with the latest technology using three-dimensional (3D) computed tomography (CT). The implementation of modern non-destructive methods is of great importance for the application of principles of Industry 4.0, where these methods provide collecting of data on the material properties, in its entire production flow of log processing.","PeriodicalId":45042,"journal":{"name":"Central European Forestry Journal","volume":"67 1","pages":"3 - 13"},"PeriodicalIF":1.4000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Innovative methods of non-destructive evaluation of log quality\",\"authors\":\"Vojtěch Ondrejka, T. Gergeľ, T. Bucha, M. Pástor\",\"doi\":\"10.2478/forj-2020-0021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For the sustainability of an important renewable resource, such as wood, it is important to significantly increase the efficiency of its processing. A large part of this raw material ends up in the wood processing industry, where it is used for the production of pulp, paper, construction and furniture timber, floors and others. Therefore, it is very important to gain the knowledge needed for optimal valuation of raw wood material, through quality detection and classification into quality classes. There are many defectoscopic methods working on different physical principles. The most familiar of these methods are semi-destructive and non-destructive, as they do not cause damage to the tree or wood during assessment. The aim of this article is to describe, assess and compare known semi-destructive and non-destructive methods for the assessment of wood properties. This article describes basic visual inspection, basic semi-destructive methods (Pilodyn, Resistograph) and advanced semi-destructive methods (SilviScan®, DiscBot®) as well. Non-destructive methods use mostly acoustic wave motion (acoustic, ultrasonic), high-frequency waves (using georadar, microwave) and methods based on visual evaluation (image, laser). At last, there are X–ray methods with the latest technology using three-dimensional (3D) computed tomography (CT). The implementation of modern non-destructive methods is of great importance for the application of principles of Industry 4.0, where these methods provide collecting of data on the material properties, in its entire production flow of log processing.\",\"PeriodicalId\":45042,\"journal\":{\"name\":\"Central European Forestry Journal\",\"volume\":\"67 1\",\"pages\":\"3 - 13\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central European Forestry Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/forj-2020-0021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Forestry Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/forj-2020-0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
Innovative methods of non-destructive evaluation of log quality
Abstract For the sustainability of an important renewable resource, such as wood, it is important to significantly increase the efficiency of its processing. A large part of this raw material ends up in the wood processing industry, where it is used for the production of pulp, paper, construction and furniture timber, floors and others. Therefore, it is very important to gain the knowledge needed for optimal valuation of raw wood material, through quality detection and classification into quality classes. There are many defectoscopic methods working on different physical principles. The most familiar of these methods are semi-destructive and non-destructive, as they do not cause damage to the tree or wood during assessment. The aim of this article is to describe, assess and compare known semi-destructive and non-destructive methods for the assessment of wood properties. This article describes basic visual inspection, basic semi-destructive methods (Pilodyn, Resistograph) and advanced semi-destructive methods (SilviScan®, DiscBot®) as well. Non-destructive methods use mostly acoustic wave motion (acoustic, ultrasonic), high-frequency waves (using georadar, microwave) and methods based on visual evaluation (image, laser). At last, there are X–ray methods with the latest technology using three-dimensional (3D) computed tomography (CT). The implementation of modern non-destructive methods is of great importance for the application of principles of Industry 4.0, where these methods provide collecting of data on the material properties, in its entire production flow of log processing.
期刊介绍:
Central European Forestry Journal (published as Lesnícky Èasopis - Forestry Journal until 2016) publishes novel science originating from research in forestry and related braches. Central European Forestry Journal is a professional peer-reviewed scientific journal published 4-time a year. The journal contains original papers and review papers of basic and applied research from all fields of forestry and related disciplines. The editorial office accepts the manuscripts within the focus of the journal exclusively in English language. The journal does not have article processing charges (APCs) nor article submission charges. Central European Forestry Journal, abbreviation: Cent. Eur. For. J., publishes original papers and review papers of basic and applied research from all fields of forestry and related scientific areas. The journal focuses on forestry issues relevant for Europe, primarily Central European regions. Original works and review papers can be submitted only in English language.