Carolin Gut, J. Vukić, R. Šanda, T. Moritz, B. Reichenbacher
{"title":"过去和现在虾虎鱼的鉴定:用耳石特征、分类学和体形态学区分Gobius和Pomatoschistus(鱼虎鱼目:虾虎鱼目)","authors":"Carolin Gut, J. Vukić, R. Šanda, T. Moritz, B. Reichenbacher","doi":"10.1163/18759866-BJA10002","DOIUrl":null,"url":null,"abstract":"Gobies (Gobiidae + Oxudercidae) are among the largest groups of extant marine fishes. Fossils of gobies are abundant since the Miocene, and many species have been reported so far. However, delimitation of fossil goby species is challenging because molecular markers and diagnostic traits such as the disposition of sensory head papillae are lost. This study provides, for the first time, an actualistic framework for the identification of fossil goby species. We focus on characters that can in principle be recognized in fossils, and evaluate their ability to discriminate between extant goby species based on statistical analyses. Using 14 extant species of Gobius and seven species of Pomatoschistus, we conducted otolith morphometry, elliptic Fourier shape analysis of otoliths using the package ‘Momocs’, conventional fish morphometry, and meristic counts. In addition, the otoliths of all species are depicted based on SEM images and briefly described. Otolith Fourier shape analysis proved to be most efficient in discrimination of species within both genera, Gobius and Pomatoschistus. Several characters used in the other approaches also worked well, but the results were variable, and the relative taxonomic significance of particular variables tended to change depending on the species under consideration. We propose otolith shape analysis as a powerful tool to explore ancient goby species diversity when samples with abundant fossil otoliths are present. Overall, the herein presented data will greatly facilitate delimitation of fossil goby species in future studies, and will consequently shed new light on the evolution of goby diversity and biogeography through time.","PeriodicalId":55210,"journal":{"name":"Contributions to Zoology","volume":"1 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2020-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1163/18759866-BJA10002","citationCount":"11","resultStr":"{\"title\":\"Identification of past and present gobies: distinguishing Gobius and Pomatoschistus (Teleostei: Gobioidei) species using characters of otoliths, meristics and body morphometry\",\"authors\":\"Carolin Gut, J. Vukić, R. Šanda, T. Moritz, B. Reichenbacher\",\"doi\":\"10.1163/18759866-BJA10002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gobies (Gobiidae + Oxudercidae) are among the largest groups of extant marine fishes. Fossils of gobies are abundant since the Miocene, and many species have been reported so far. However, delimitation of fossil goby species is challenging because molecular markers and diagnostic traits such as the disposition of sensory head papillae are lost. This study provides, for the first time, an actualistic framework for the identification of fossil goby species. We focus on characters that can in principle be recognized in fossils, and evaluate their ability to discriminate between extant goby species based on statistical analyses. Using 14 extant species of Gobius and seven species of Pomatoschistus, we conducted otolith morphometry, elliptic Fourier shape analysis of otoliths using the package ‘Momocs’, conventional fish morphometry, and meristic counts. In addition, the otoliths of all species are depicted based on SEM images and briefly described. Otolith Fourier shape analysis proved to be most efficient in discrimination of species within both genera, Gobius and Pomatoschistus. Several characters used in the other approaches also worked well, but the results were variable, and the relative taxonomic significance of particular variables tended to change depending on the species under consideration. We propose otolith shape analysis as a powerful tool to explore ancient goby species diversity when samples with abundant fossil otoliths are present. Overall, the herein presented data will greatly facilitate delimitation of fossil goby species in future studies, and will consequently shed new light on the evolution of goby diversity and biogeography through time.\",\"PeriodicalId\":55210,\"journal\":{\"name\":\"Contributions to Zoology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2020-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1163/18759866-BJA10002\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contributions to Zoology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1163/18759866-BJA10002\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to Zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1163/18759866-BJA10002","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
Identification of past and present gobies: distinguishing Gobius and Pomatoschistus (Teleostei: Gobioidei) species using characters of otoliths, meristics and body morphometry
Gobies (Gobiidae + Oxudercidae) are among the largest groups of extant marine fishes. Fossils of gobies are abundant since the Miocene, and many species have been reported so far. However, delimitation of fossil goby species is challenging because molecular markers and diagnostic traits such as the disposition of sensory head papillae are lost. This study provides, for the first time, an actualistic framework for the identification of fossil goby species. We focus on characters that can in principle be recognized in fossils, and evaluate their ability to discriminate between extant goby species based on statistical analyses. Using 14 extant species of Gobius and seven species of Pomatoschistus, we conducted otolith morphometry, elliptic Fourier shape analysis of otoliths using the package ‘Momocs’, conventional fish morphometry, and meristic counts. In addition, the otoliths of all species are depicted based on SEM images and briefly described. Otolith Fourier shape analysis proved to be most efficient in discrimination of species within both genera, Gobius and Pomatoschistus. Several characters used in the other approaches also worked well, but the results were variable, and the relative taxonomic significance of particular variables tended to change depending on the species under consideration. We propose otolith shape analysis as a powerful tool to explore ancient goby species diversity when samples with abundant fossil otoliths are present. Overall, the herein presented data will greatly facilitate delimitation of fossil goby species in future studies, and will consequently shed new light on the evolution of goby diversity and biogeography through time.
期刊介绍:
Contributions to Zoology solicits high-quality papers in all systematics-related branches of comparative zoology (including paleozoology). Preference will be given to manuscripts dealing with conceptual issues and to integrative papers (e.g., ecology and biodiversity, morphology and phylogeny and character state evolution, phylogeny and historical biogeography, systematics and bioinformatics, bioinformatics and biodiversity, habitat disturbance and biogeography, etc.). Reviews and alpha-taxonomic contributions are considered for publication, but acceptance will depend on their high quality and exceptional nature.