Ya Chen, Jiaheng Yang, Dianjun Wang, Haoxiang Zhong, Xingkang Zheng, Qianyang Liu
{"title":"模块化六自由度轻型协同搬运机器人的设计与实现","authors":"Ya Chen, Jiaheng Yang, Dianjun Wang, Haoxiang Zhong, Xingkang Zheng, Qianyang Liu","doi":"10.12688/cobot.17442.1","DOIUrl":null,"url":null,"abstract":"Background: In view of the poor working environment and high labor intensity of manual loading and unloading in the production process of small forgings, a modular 6-DOF (degrees of freedom) light-weight cooperative handling robot is designed. Combined with the computer-aided design method, the modular and lightweight design is realized through the simulation of the actual motion situation. Methods: The overall configuration and modular joints of the robot were designed, and the static characteristics analysis of the whole robot and key parts was performed using Ansys to verify the rationality of the structural design. The kinematics model of the robot was established by using the Denavit-Hartenberg parameter method and the workspace of the robot was solved by forward kinematics simulation. Performance testing of the experimental prototype was executed. The repeated positioning accuracy was analyzed by a laser tracker to measure the position information at the end of the robot. Results: The results show that the repetitive positioning accuracy of the robot is 0.09mm, which can meet the requirements of loading and unloading handling in forging production. Conclusions: The study provides a theoretical basis for the structure design and optimization of the light-weight cooperative robot.","PeriodicalId":29807,"journal":{"name":"Cobot","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Design and implementation of modular 6-degrees of freedom light-weight cooperative handling robot\",\"authors\":\"Ya Chen, Jiaheng Yang, Dianjun Wang, Haoxiang Zhong, Xingkang Zheng, Qianyang Liu\",\"doi\":\"10.12688/cobot.17442.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: In view of the poor working environment and high labor intensity of manual loading and unloading in the production process of small forgings, a modular 6-DOF (degrees of freedom) light-weight cooperative handling robot is designed. Combined with the computer-aided design method, the modular and lightweight design is realized through the simulation of the actual motion situation. Methods: The overall configuration and modular joints of the robot were designed, and the static characteristics analysis of the whole robot and key parts was performed using Ansys to verify the rationality of the structural design. The kinematics model of the robot was established by using the Denavit-Hartenberg parameter method and the workspace of the robot was solved by forward kinematics simulation. Performance testing of the experimental prototype was executed. The repeated positioning accuracy was analyzed by a laser tracker to measure the position information at the end of the robot. Results: The results show that the repetitive positioning accuracy of the robot is 0.09mm, which can meet the requirements of loading and unloading handling in forging production. Conclusions: The study provides a theoretical basis for the structure design and optimization of the light-weight cooperative robot.\",\"PeriodicalId\":29807,\"journal\":{\"name\":\"Cobot\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cobot\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12688/cobot.17442.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cobot","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12688/cobot.17442.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and implementation of modular 6-degrees of freedom light-weight cooperative handling robot
Background: In view of the poor working environment and high labor intensity of manual loading and unloading in the production process of small forgings, a modular 6-DOF (degrees of freedom) light-weight cooperative handling robot is designed. Combined with the computer-aided design method, the modular and lightweight design is realized through the simulation of the actual motion situation. Methods: The overall configuration and modular joints of the robot were designed, and the static characteristics analysis of the whole robot and key parts was performed using Ansys to verify the rationality of the structural design. The kinematics model of the robot was established by using the Denavit-Hartenberg parameter method and the workspace of the robot was solved by forward kinematics simulation. Performance testing of the experimental prototype was executed. The repeated positioning accuracy was analyzed by a laser tracker to measure the position information at the end of the robot. Results: The results show that the repetitive positioning accuracy of the robot is 0.09mm, which can meet the requirements of loading and unloading handling in forging production. Conclusions: The study provides a theoretical basis for the structure design and optimization of the light-weight cooperative robot.
期刊介绍:
Cobot is a rapid multidisciplinary open access publishing platform for research focused on the interdisciplinary field of collaborative robots. The aim of Cobot is to enhance knowledge and share the results of the latest innovative technologies for the technicians, researchers and experts engaged in collaborative robot research. The platform will welcome submissions in all areas of scientific and technical research related to collaborative robots, and all articles will benefit from open peer review.
The scope of Cobot includes, but is not limited to:
● Intelligent robots
● Artificial intelligence
● Human-machine collaboration and integration
● Machine vision
● Intelligent sensing
● Smart materials
● Design, development and testing of collaborative robots
● Software for cobots
● Industrial applications of cobots
● Service applications of cobots
● Medical and health applications of cobots
● Educational applications of cobots
As well as research articles and case studies, Cobot accepts a variety of article types including method articles, study protocols, software tools, systematic reviews, data notes, brief reports, and opinion articles.