{"title":"应用Box-Behnken设计优化反相高效液相色谱法测定含有杂质的帕洛诺司琼和尼吡坦联合剂型的含量","authors":"Mohamed A. ElHamid, Ehab F Elkady, E. Mostafa","doi":"10.1080/10826076.2023.2196326","DOIUrl":null,"url":null,"abstract":"Abstract The use of (Netupitant and Palonosetron) combination to treat nausea and vomiting in cancer chemotherapy patients has been authorized by the Food and Drug Administration. For the simultaneous determination of Netupitant (NET) and palonosetron (PAL) in the presence of two of their related substances and in their dosage form, a sensitive and selective RP-HPLC method has been developed and validated. The aforementioned medications were separated and quantified with the help of experimental design. The Box-Behnken design was used in the experiment to optimize the chromatographic method’s analytical parameters. It employed RP-HPLC with a UV detector. Waters ODS-C18 column (3.5 µm, 75 × 4.6 mm) with a mobile phase composed of acetonitrile: 25 mM phosphate buffer (pH = 3.5) in a gradient mode at 254 nm was employed to separate the cited drugs and their impurities. Palonosetron was linear over the concentration range (1–50 µg/mL) and Netupitant (10–100 µg/mL). According to ICH guidelines, the new method underwent thorough validation. Between the proposed method’s results and those from the reported method, there was no significant difference. It is easy to apply the technique to the analysis of the specified drugs in their combination dosage form for quality control considerations. Graphical Abstract","PeriodicalId":16295,"journal":{"name":"Journal of Liquid Chromatography & Related Technologies","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Box-Behnken design for optimization of A RP-HPLC method for determination of palonosetron and netupitant in their combined dosage form in presence of their impurities\",\"authors\":\"Mohamed A. ElHamid, Ehab F Elkady, E. Mostafa\",\"doi\":\"10.1080/10826076.2023.2196326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The use of (Netupitant and Palonosetron) combination to treat nausea and vomiting in cancer chemotherapy patients has been authorized by the Food and Drug Administration. For the simultaneous determination of Netupitant (NET) and palonosetron (PAL) in the presence of two of their related substances and in their dosage form, a sensitive and selective RP-HPLC method has been developed and validated. The aforementioned medications were separated and quantified with the help of experimental design. The Box-Behnken design was used in the experiment to optimize the chromatographic method’s analytical parameters. It employed RP-HPLC with a UV detector. Waters ODS-C18 column (3.5 µm, 75 × 4.6 mm) with a mobile phase composed of acetonitrile: 25 mM phosphate buffer (pH = 3.5) in a gradient mode at 254 nm was employed to separate the cited drugs and their impurities. Palonosetron was linear over the concentration range (1–50 µg/mL) and Netupitant (10–100 µg/mL). According to ICH guidelines, the new method underwent thorough validation. Between the proposed method’s results and those from the reported method, there was no significant difference. It is easy to apply the technique to the analysis of the specified drugs in their combination dosage form for quality control considerations. Graphical Abstract\",\"PeriodicalId\":16295,\"journal\":{\"name\":\"Journal of Liquid Chromatography & Related Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Liquid Chromatography & Related Technologies\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/10826076.2023.2196326\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Liquid Chromatography & Related Technologies","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/10826076.2023.2196326","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Application of Box-Behnken design for optimization of A RP-HPLC method for determination of palonosetron and netupitant in their combined dosage form in presence of their impurities
Abstract The use of (Netupitant and Palonosetron) combination to treat nausea and vomiting in cancer chemotherapy patients has been authorized by the Food and Drug Administration. For the simultaneous determination of Netupitant (NET) and palonosetron (PAL) in the presence of two of their related substances and in their dosage form, a sensitive and selective RP-HPLC method has been developed and validated. The aforementioned medications were separated and quantified with the help of experimental design. The Box-Behnken design was used in the experiment to optimize the chromatographic method’s analytical parameters. It employed RP-HPLC with a UV detector. Waters ODS-C18 column (3.5 µm, 75 × 4.6 mm) with a mobile phase composed of acetonitrile: 25 mM phosphate buffer (pH = 3.5) in a gradient mode at 254 nm was employed to separate the cited drugs and their impurities. Palonosetron was linear over the concentration range (1–50 µg/mL) and Netupitant (10–100 µg/mL). According to ICH guidelines, the new method underwent thorough validation. Between the proposed method’s results and those from the reported method, there was no significant difference. It is easy to apply the technique to the analysis of the specified drugs in their combination dosage form for quality control considerations. Graphical Abstract
期刊介绍:
The Journal of Liquid Chromatography & Related Technologies is an internationally acclaimed forum for fast publication of critical, peer reviewed manuscripts dealing with analytical, preparative and process scale liquid chromatography and all of its related technologies, including TLC, capillary electrophoresis, capillary electrochromatography, supercritical fluid chromatography and extraction, field-flow technologies, affinity, and much more. New separation methodologies are added when they are developed. Papers dealing with research and development results, as well as critical reviews of important technologies, are published in the Journal.