部分遮阳条件下反激变换器上人类心理优化(HPO)、人工蜂群(ABC)和模糊逻辑控制器(FLC)最大功率点跟踪方法的性能比较

M. Z. Efendi, Mochammad Rody Dwirantono, S. Suhariningsih, L. Raharja
{"title":"部分遮阳条件下反激变换器上人类心理优化(HPO)、人工蜂群(ABC)和模糊逻辑控制器(FLC)最大功率点跟踪方法的性能比较","authors":"M. Z. Efendi, Mochammad Rody Dwirantono, S. Suhariningsih, L. Raharja","doi":"10.25077/jnte.v12n2.1022.2023","DOIUrl":null,"url":null,"abstract":"Maximum Power Point Tracking (MPPT) is a method to track the power point of an energy source with the intention to generate maximum power. The surface of the Solar Panel has the possibility of being blocked when it receives sunlight. The barrier can be in the shape of shadows of objects that are nearby solar panels. The problem causes the power generated to be not optimal and makes more than one MPPT peak on the characteristics of P-V. This paper compares several methods of MPPT such as Human Psychology Optimization (HPO), Artificial Bee Colony (ABC), and Fuzzy logic Controller (FLC) under partial shading conditions, the comparison of three method by simulation. This algorithm hooks up to a flyback converter to provide MPP. From the results of MPPT accuracy in partial shading situations, the ABC and HPO approach methods can achieve GMPP with more than 82.22 % accuracy. For convergence, ABC needs extra time to discover GMPP. From the results, the Fuzzy approach can track however nevertheless trapped on LMPP.","PeriodicalId":30660,"journal":{"name":"Jurnal Nasional Teknik Elektro","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Comparison of Maximum Power Point Tracking Method of Human Psychology Optimization (HPO), Artificial Bee Colony (ABC) and Fuzzy Logic Controller (FLC) on Flyback Converter Under Partial Shading Condition\",\"authors\":\"M. Z. Efendi, Mochammad Rody Dwirantono, S. Suhariningsih, L. Raharja\",\"doi\":\"10.25077/jnte.v12n2.1022.2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maximum Power Point Tracking (MPPT) is a method to track the power point of an energy source with the intention to generate maximum power. The surface of the Solar Panel has the possibility of being blocked when it receives sunlight. The barrier can be in the shape of shadows of objects that are nearby solar panels. The problem causes the power generated to be not optimal and makes more than one MPPT peak on the characteristics of P-V. This paper compares several methods of MPPT such as Human Psychology Optimization (HPO), Artificial Bee Colony (ABC), and Fuzzy logic Controller (FLC) under partial shading conditions, the comparison of three method by simulation. This algorithm hooks up to a flyback converter to provide MPP. From the results of MPPT accuracy in partial shading situations, the ABC and HPO approach methods can achieve GMPP with more than 82.22 % accuracy. For convergence, ABC needs extra time to discover GMPP. From the results, the Fuzzy approach can track however nevertheless trapped on LMPP.\",\"PeriodicalId\":30660,\"journal\":{\"name\":\"Jurnal Nasional Teknik Elektro\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Nasional Teknik Elektro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25077/jnte.v12n2.1022.2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Nasional Teknik Elektro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25077/jnte.v12n2.1022.2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最大功率点跟踪(MPPT)是一种跟踪电源功率点的方法,目的是产生最大功率。太阳能电池板的表面在接受阳光照射时有被遮挡的可能。屏障的形状可以是太阳能电池板附近物体的阴影。该问题导致产生的功率不是最优的,并且在P-V特性上产生多个MPPT峰值。本文比较了人类心理优化(Human Psychology Optimization, HPO)、人工蜂群(Artificial Bee Colony, ABC)和模糊逻辑控制器(Fuzzy logic Controller, FLC)在部分遮光条件下的几种MPPT方法,并通过仿真对三种方法进行了比较。该算法连接到反激变换器以提供MPP。从部分遮阳情况下的MPPT精度结果来看,ABC和HPO方法可以达到82.22%以上的GMPP精度。为了收敛,ABC需要额外的时间来发现GMPP。从结果来看,模糊方法可以跟踪被困在LMPP上的粒子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Comparison of Maximum Power Point Tracking Method of Human Psychology Optimization (HPO), Artificial Bee Colony (ABC) and Fuzzy Logic Controller (FLC) on Flyback Converter Under Partial Shading Condition
Maximum Power Point Tracking (MPPT) is a method to track the power point of an energy source with the intention to generate maximum power. The surface of the Solar Panel has the possibility of being blocked when it receives sunlight. The barrier can be in the shape of shadows of objects that are nearby solar panels. The problem causes the power generated to be not optimal and makes more than one MPPT peak on the characteristics of P-V. This paper compares several methods of MPPT such as Human Psychology Optimization (HPO), Artificial Bee Colony (ABC), and Fuzzy logic Controller (FLC) under partial shading conditions, the comparison of three method by simulation. This algorithm hooks up to a flyback converter to provide MPP. From the results of MPPT accuracy in partial shading situations, the ABC and HPO approach methods can achieve GMPP with more than 82.22 % accuracy. For convergence, ABC needs extra time to discover GMPP. From the results, the Fuzzy approach can track however nevertheless trapped on LMPP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
20
期刊最新文献
Development of DC Motor Speed Control Using PID Based on Arduino and Matlab For Laboratory Trainer IoT-Based Disaster Response Robot for Victim Identification in Building Collapses Techno-Economic Analysis for Raja Ampat Off-Grid System Comparative Analysis of Two-Stage and Single-Stage Models in Batteryless PV Systems for Motor Power Supply Enhanced Identification of Valvular Heart Diseases through Selective Phonocardiogram Features Driven by Convolutional Neural Networks (SFD-CNN)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1