基于ResNet和PCA的高效人脸识别深度学习方案

Pub Date : 2023-09-06 DOI:10.4018/ijiit.329957
Rajendra Kumar Dwivedi, Devesh Kumar
{"title":"基于ResNet和PCA的高效人脸识别深度学习方案","authors":"Rajendra Kumar Dwivedi, Devesh Kumar","doi":"10.4018/ijiit.329957","DOIUrl":null,"url":null,"abstract":"Face recognition is an emerging field of research in recent days. With the rise of deep learning, face recognition has become efficient and precise, creating new milestones. The performance, accuracy, and computational time of the existing schemes can be enhanced by devising a new scheme. In this context, a multiclass classification framework for face recognition using residual network (ResNet) and principal component analysis (PCA) schemes of deep learning with Dlib library is proposed in this paper. The proposed framework produces face recognition accuracy of 99.6% and a reduction of computational time with 68.03% using principal component analysis.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ResNet and PCA-Based Deep Learning Scheme for Efficient Face Recognition\",\"authors\":\"Rajendra Kumar Dwivedi, Devesh Kumar\",\"doi\":\"10.4018/ijiit.329957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Face recognition is an emerging field of research in recent days. With the rise of deep learning, face recognition has become efficient and precise, creating new milestones. The performance, accuracy, and computational time of the existing schemes can be enhanced by devising a new scheme. In this context, a multiclass classification framework for face recognition using residual network (ResNet) and principal component analysis (PCA) schemes of deep learning with Dlib library is proposed in this paper. The proposed framework produces face recognition accuracy of 99.6% and a reduction of computational time with 68.03% using principal component analysis.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijiit.329957\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijiit.329957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人脸识别是近年来一个新兴的研究领域。随着深度学习的兴起,人脸识别变得高效和精确,创造了新的里程碑。通过设计新的方案,可以提高现有方案的性能、精度和计算时间。在此背景下,本文提出了基于残差网络(ResNet)和基于Dlib库的深度学习主成分分析(PCA)方案的人脸识别多类分类框架。使用主成分分析,该框架的人脸识别准确率达到99.6%,计算时间减少68.03%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
ResNet and PCA-Based Deep Learning Scheme for Efficient Face Recognition
Face recognition is an emerging field of research in recent days. With the rise of deep learning, face recognition has become efficient and precise, creating new milestones. The performance, accuracy, and computational time of the existing schemes can be enhanced by devising a new scheme. In this context, a multiclass classification framework for face recognition using residual network (ResNet) and principal component analysis (PCA) schemes of deep learning with Dlib library is proposed in this paper. The proposed framework produces face recognition accuracy of 99.6% and a reduction of computational time with 68.03% using principal component analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1